用TensorFlow游乐场学习神经网络 进入TensorFlow游乐场 认识TensorFlow游乐场界面 开始打副本 参数解析 1. 学习率 2. 激活函数 3. 正则化和正则化比率 4. 问题类型和数据集 5. 训练集大小和噪声 6. 批大小 7. 网络的深度和广度 8. 损失值 可训练参数 尾巴 进入TensorFlow游乐场 https://playground.tensorflow.org 认识TensorFlow游乐场界面 网页可以划分成4部分: 训练控制器(左上 ↖) 训练超参数(右上 ↗) 样本超参数(左下 ↙) 模型超参数(右下 ↘) 开始打副本 下图显示了一个神经网络。各个参数意义如下: 数据集使用高斯分布 90%用于训练,剩余10%用于测试 一批取10个点用于训练,并对学习结果取平均 学习率为0.1 激活函数使用ReLU 使用L2正则化 正则化比率为0.001 问题类型为分类(又或者叫逻辑回归)