PCA & SVD & 极分解 简介

前言

这个去年就会的知识因为很久没用已经快忘了,以前没写总结,于是今天要用到的时候又必须重新学一遍。因为网上的多数教程实在过于琐碎,于是总结一篇精炼的文章以便复习。

PCA

考虑 n n n m m m维特征: X = ( x 1 , . . . , x n ) X=(x_1,...,x_n) X=(x1,...,xn)。(一列为一个特征,一行为所有特征在某一维的坐标,一定要区分清楚),先将其每维度特征减去平均值。

得到每个维度的协方差矩阵: C x = X X T C_x=XX^T Cx=XXT

以前的基为 ( e 1 , . . . , e m ) (e_1,...,e_m) (e1,...,em),想找到一组新的基 ( η 1 , . . . , η m ) (\eta_1,...,\eta_m) (η1,...,ηm),得到新的特征矩阵 Y = Q X Y=QX Y=QX Q Q Q e e

  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
PCA (Principal Component Analysis) 和 SVD (Singular Value Decomposition) 都是用于数据降维的重要数学工具,在机器学习和数据分析中广泛应用。它们都可以帮助我们在高维空间中找到关键特征,减少数据的复杂性和计算成本。 **PCA(主成分分析)**: 1. **基本原理**:PCA通过线性变换将原始数据投影到一组新的坐标轴上,新轴的方向对应数据方差最大的方向。通过保留主要的特征方向(即主成分),我们可以丢弃那些对数据解释度不大的维度。 2. **SVD的应用**:实际上,PCA可以通过SVD来实现,因为数据矩阵(中心化后)的SVD分解会产生正交的左奇异向量作为新坐标轴,而这些向量对应的奇异值代表了信息的重要性。 3. **降维步骤**:计算数据的协方差矩阵,然后做SVD分解得到UΣVT。前k个主成分对应矩阵U的前k列,降维后的数据就是这k列对应的原始数据乘积。 **SVD(奇异值分解)**: 1. **直接应用**:SVD本身就是将一个矩阵分解为三个部分:UΣV^T,其中U和V是对称正交矩阵,Σ是对角矩阵,包含的是数据的奇异值。奇异值反映了数据的“能量”或“影响力”。 2. **降维与重构**:SVD可用于降维,选择前k个最大的奇异值和对应的左/右奇异向量,仅使用这部分信息就可以重建近似的原始数据,从而达到降维效果。 3. **SVDPCA的关系**:当处理标准化的数据时,SVDPCA的结果相同。SVD提供了一种更通用的框架,但PCA在解释性上有优势,因为它构造的新坐标是根据数据的方差。 **相关问题--:** 1. PCA如何选择保留多少维度? 2. SVD降维在实际应用中的优势是什么? 3. 如何利用SVD进行数据的压缩存储?

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值