题解:
只有有向图是所有点的度数乘起来。
考虑多了一条边这样做的非法情况,肯定有包含这条边的环,也就对应着原图从 y y 到的路径, 存在这个环的非法情况是这个环不含的点的度数的乘积, 直接在原图DP即可。
#include <bits/stdc++.h>
typedef long long LL;
using namespace std;
const int RLEN=1<<18|1;
inline char nc() {
static char ibuf[RLEN],*ib,*ob;
(ib==ob) && (ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
return (ib==ob) ? -1 : *ib++;
}
inline int rd() {
char ch=nc(); int i=0,f=1;
while(!isdigit(ch)) {if(ch=='-')f=-1; ch=nc();}
while(isdigit(ch)) {i=(i<<1)+(i<<3)+ch-'0'; ch=nc();}
return i*f;
}
const int N=1e5+50, mod=1e9+7;
inline int add(int x,int y) {return (x+y>=mod) ? (x+y-mod) : (x+y); }
inline int dec(int x,int y) {return (x-y<0) ? (x-y+mod) : (x-y);}
inline int mul(int x,int y) {return (LL)x*y%mod;}
int n,m,x,y,deg[N],c[N],inv[N],f[N];
vector <int> fa[N];
queue <int> q;
int main() {
n=rd(); m=rd(); x=rd(); y=rd();
inv[1]=1;
for(int i=2;i<=n;i++) inv[i]=dec(0,mul(mod/i,inv[mod%i]));
for(int i=1;i<=m;i++) {
int u=rd(), v=rd();
fa[v].push_back(u);
++deg[v]; ++c[u];
} deg[1]=1; ++deg[y];
int ans=1;
for(int i=1;i<=n;i++) ans=mul(ans,deg[i]);
for(int i=1;i<=n;i++) if(!c[i]) q.push(i);
while(!q.empty()) {
int u=q.front(); q.pop();
if(u==x) f[u]++;
f[u]=mul(f[u],inv[deg[u]]);
for(int e=fa[u].size()-1;e>=0;e--) {
int v=fa[u][e]; f[v]=add(f[v],f[u]);
if(!--c[v]) q.push(v);
}
}
ans=dec(ans,mul(ans,f[y]));
cout<<ans;
}