题解:
观察到模3意义下和始终不变就好做了。
考虑任意 t t t,判断是否能被 s s s转移出来我们可以贪心。
那么我们直接对 s s s的每个位置贪心找后面的转移即可。 注意没有两个相邻要特判一下。
#include <bits/stdc++.h>
using namespace std;
const int N=1e5+50, mod=1e9+7;
inline void add(int &x,int y) {x=(x+y>=mod) ? (x+y-mod) : (x+y);}
char t[N];
int n,ans,s[N],f[N],pre[N][3],fir[N];
int main() {
scanf("%s",t+1); n=strlen(t+1);
for(int i=1;i<=n;i++) s[i]=(s[i-1]+t[i]-'a'+1)%3;
pre[0][0]=pre[0][1]=pre[0][2]=-1;
for(int i=1;i<=n;i++) {
pre[i][0]=pre[i-1][0];
pre[i][1]=pre[i-1][1];
pre[i][2]=pre[i-1][2];
pre[i][s[i-1]]=i-1;
}
for(int i=1;i<=n;i++) {
fir[i]=fir[i-1];
if(t[i]==t[i-1]) fir[i]=i;
}
f[0]=1;
for(int i=1;i<=n;i++) {
int pos=fir[i]-1;
f[i]=f[i-1];
int val=(t[i]=='a') ? 2 : 1;
if(~pos) {
pos=pre[pos][(s[i]-val+3)%3];
if(~pos) add(f[i],f[pos]);
}
if(!s[i] && i!=n) add(f[i],1);
}
if(!fir[n]) for(int i=1;i<n;i++) if(!s[i]) add(f[n],mod-1);
cout<<f[n]<<'\n';
}