常见近红外/红外定量分析指标(论文投稿)

前期近红外定量分析常用决定系数和RMSE作判定指标,但国外期刊要求更多。本文介绍了常见的判定指标,包括决定系数、残差均方根RMSE、标准分析误差SEE和相对分析误差RPD,并给出了RPD的评判标准。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

       在前期做近红外定量分析过程中,一般采用决定系数和RMSE作为判定指标,但是在投递论文时发现,国外期刊对于指标的要求不止以上两种。常见的有以下几种:

       (1)决定系数

                                                  R^2=1-\sum_{i=1}^{n}(y_{i}-y_{i}^{\wedge })^{2}/\sum_{i=1}^{n}(y_{i}-y_{i}^{- })^{2} 

{y}_{i}  为第i 个样本的某个组分的标准值;

           y_{i}^{\wedge }  为第i 个样本的相应组分的预测值; 

           y^{-}  为样品集相应组分的平均值。

在相同浓度范围的条件下,所建模型的决定系数的值越接近于1其相应模型的仿真效果越好。但是在实际建模过程中,一般设定的阈值为: \mathit{0.66}\leq R^2\leq\mathit{0.8} 时刚好达到预测效果; 当\mathit{0.81}\leq R^2\leq\mathit{0.90}时预测效果较好,当R^2\geq 0.90时, 预测效果最佳。

(2)残差均方根RMSE

                                                     RMSE = \sqrt{\frac{\sum_{i=1}^n\left(y_i-\hat{y}_i \right )}{n-1}} 

在实际分析过程中,基本上所有的文献都是将所有数据的分为calibration set 和 validation set 或者prediction set,所以一般RMSE分为RMSEC 和RMSEP.。此外,一般还会选择进行交叉验证:crose validation ,所以还会有RMSECV等情况。

(3)标准分析误差SEE

                                                  SSE=\sqrt{\sum_{i=1}^{n}(d_{i}-d^{-})^{2}/(n-1)}

d_{i}为第 i 个样品的残差,即 d_{i}=y_{i}-{\hat{y}_{i}};

\bar{d}为残差的平均值, 即 \bar{y}=\frac{1}{n}\sum_{i=1}^{n}d_{i}

(4)相对分析误差 (relative percent deviation) RPD

相对分析误差是一种常用不常见的分析指标,为什么说交常用不常见?因为相对分析误差基于决定系数,在统计意义上,其分析指标间接等价于决定系数。其定义公式如下:

                                                         RPD=\frac{1}{\sqrt{1-R^{2}}}

但是部分文献上将其定义为:

                                                           RPD=\frac{SD}{SEC}

或:

                                                          RPD=\frac{SD}{SEP}

其中SD为分析样本的标准偏差;SEC/SEP为分析样品的均方根误差。

相应的评判指标为:

 RPD < 1.4 : 认为所建模型不可靠;

1.4 < RPD < 2.0 : 认为所建模型较可靠;

RPD > 2.0 : 则认为所建模型具备较高可靠性,能够用于模型分析。

个人新建立的weixin公众号,光谱学与光谱分析,欢迎大家关注

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值