旋转机械剩余使用寿命预测研究

摘要

现代制造业的快速发展促进了大型机械设备的大规模生产。旋转机械是大型机械设备的关键部件,然而,旋转机械在长时间运行后,难免会有磨损,性能下降,最终导致故障。不及时的进行维护,这些故障可能就会导致机器的损坏,甚至大型灾难。剩余使用寿命(Remaining Useful Life,RUL)预测对于旋转机械的状态监测和及时维修具有重要意义,是保证机械安全运行、降低维修成本和经济损失的一项有前途的技术。
本文以轴承和齿轮的全寿命周期振动信号作为研究对象,提出了基于一种新的排序特征和时间卷积网络(Temporal Convolutional Network,TCN)的旋转机械RUL预测方法。对于现存的RUL预测方法,总的来说,可以分为两类:基于模型和数据驱动。如果所建立的模型能够准确地表征老化机械的退化过程,则第一种方法是有效的。然而,实际老化过程受到各种因素的影响,比如负载和工作环境等。一般退化过程是非线性、随机、动态变化的,因此在退化模型中存在着大量的不确定参数。相对而言,数据驱动的方法可以实时跟踪机器的退化过程,能更准确预测RUL。因此本文基于数据驱动的思想,首先对原始振动数据进行处理,构造出一系列的特征;然后通过这些特征训练出一个预测模型,用于RUL预测。
目前,一些分解算法多用在信号的预处理上,比如传统的经验模态分解算法(Empirical Mode Decomposition,EMD),然而,EMD分解信号可能出现模态混叠和端点效应现象,所以本文引入了集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)和局部均值分解(Local Mean Decomposition,LMD)算法作对比。但由于分解后的信号内部数据之间的关系并不是很清晰,这就导致训练预测模型时很难捕捉到其数据内在规律,针对这一点,本文提出了将冒泡排序(Bubble Sort,BS)算法用在特征的提取上。实验结果表明,BS算法的应用可以较大程度的提升旋转机械RUL预测精度。其次,深度学习技术已成为RUL预测的研究热点,本文将深度学习网络TCN用于预测模型的训练,该方法与传统的极限学习机(Extreme Learning Machines,ELM)、长短期记忆(Long Short Term Memory,LSTM)和卷积神经网络(Convolutional Neural Network,CNN)相比较,结果表明,本文提出的基于排序特征和TCN的RUL预测方法效果更好。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

某某用户

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值