【LLM】大模型之扩展Context长度(RoPE等方法)

note

零、位置编码

我们都知道在经典的transformer模型中,输入的文本序列经过embedding层,为每个token转为对应向量表示后,还需要对词嵌入加入位置编码进行上下文语义的建模。为了得到不同位置对应的编码,transformer模型使用不同频率的正余弦函数(其中POS表示单词所在的位置,2i和2i+1表示位置编码向量中对应的维度,d是对应位置编码向量的总维度): PE ⁡ ( pos ⁡

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

山顶夕景

小哥哥给我买个零食可好

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值