【LLM多模态】综述Visual Instruction Tuning towards General-Purpose Multimodal Model

note

论文

在这里插入图片描述
新加坡-南洋理工大学发的paper,2023年12月
我们还是从十大问题分析这篇论文,但由于是综述,可能没有实验环节详细的部分。

1. 论文试图解决什么问题

  • 一篇关于Visual Instruction Tuning 视觉指令微调任务的综述,Visual Instruction Tuning是为了让多模态LLM拥有指令遵循能力
  • 文章介绍传统CV局限性(需要针对不同任务训练不同模型,缺乏交互能力),如下图左侧

在这里插入图片描述

  • 文章从三方面介绍Visual Instruction Tuning的发展过程:单语言(英语)到多语言、图片输入从单一到多元(从图片到视频/3D图像等)、任务复杂化(从基本的图片分类到VQA视觉问答、图像生成等难任务)

在这里插入图片描述

2. 这是否是一个新的问题

去年年底到今年,类似的综述还是不少的。

3. 这篇文章要验证一个什么科学假设

4. 有哪些相关研究?如何归类?谁是这一课题在领域内值得关注的研究员?

相关的视觉微调 公开数据集如下,大部分是GPT3.5或者GPT4构造的,而且多轮对话的visual SFT数据还不少:
在这里插入图片描述

5. 论文中提到的解决方案之关键是什么?

在这里插入图片描述
跟进一步,视觉微调的主流过程,基于预训练的LLM,将视觉特征token化冰对齐到语言空间中,利用语言模型得到多模态LLM的输出:
在这里插入图片描述

6. 论文中的实验是如何设计的?

是综述,没实验。

7. 用于定量评估的数据集是什么?代码有没有开源?

用于多模态视觉微调的评估数据集:

  • VQAv2:Visual Question Answering(视觉问答)数据集,广泛用于评估模型在理解图像内容并回答问题方面的能力。
  • GQA:Graphic Question Answering数据集,包含复杂的视觉问答任务,测试模型的视觉推理能力。
  • OKVQA:Open-ended Knowledge Visual Question Answering数据集,需要外部知识来回答视觉问题,评估模型结合视觉和知识推理的能力。
  • OCR-VQA:Optical Character Recognition Visual Question Answering数据集,测试模型在图像中识别和理解文本的能力。
  • A-OKVQA:Augmented OKVQA数据集,扩展了OKVQA,包含更多样的问答对,测试模型在多种情境下的知识推理能力。
  • MSCOCO:Microsoft Common Objects in Context数据集,包含丰富的图像标注信息,广泛用于图像识别和分割任务。
  • TextCaps:数据集专注于图像字幕生成,测试模型在理解图像内容并生成自然语言描述方面的能力。
  • RefCOCO、RefCOCO+、RefCOCOg:ReferIt Game数据集的变体,用于评估模型在图像中定位指定对象的能力。
  • Visual Genome:包含图像、区域标注和关系描述的数据集,广泛用于视觉问答和图像理解任务。
  • Flickr30K:包含丰富的图像及其描述的数据集,用于评估图像字幕生成和图像理解。
  • VizWiz:数据集包含盲人用户拍摄的图像和相关问题,用于评估模型在处理实际场景和用户生成内容方面的能力。
  • ScienceQA:针对科学领域的问答数据集,测试模型在结合视觉和科学知识回答问题方面的能力。

8. 论文中的实验及结果有没有很好地支持需要验证的科学假设?

略,综述没实验。

9. 这篇论文到底有什么贡献?

这篇综述对Visual Instruction Tuning进行了任务分类:

(1)Discriminative判别式任务:
在这里插入图片描述

  • 图像分类(Image Classification):利用可学习的[CLS]token表示全局图像特征,计算[CLS] token和提示tokens之间的相似性,如下图
    在这里插入图片描述

  • 语义分割(Image Segmentation):常规的语义分割是像素级别的分类任务,LISA模型是根据复杂的query生成分割掩码,理解query并在图像中找到对应的区域(比如找到下面的维C最多的食物并标记),所以这里模型最终生成一张图。
    在这里插入图片描述

  • 目标检测(Object Detection):下图是visionLLM的做法,提出一个指令感知图像分词器(Instruction-Aware Image Tokenizer)有效理解和解析视觉输入,总之是让LLM最终回答出query指向目标的上下左右坐标。VisionLLM 在 COCO 数据集上的目标检测任务中实现了超过 60% 的平均精度(mAP),这与特定于检测的模型相当。

在这里插入图片描述

  • 视觉定位(Visual Grounding)

(2)生成式任务:

  • 图像生成
  • 图像编辑

(3)复杂推理任务:

  • Image Captioning:图像描述,可以用如MiniGPT-4、Clever Flamingo等模型
  • Visual Question Answering:即VQA视觉问答,可以用如MiniGPT-v2、instructBLIP等模型
  • Visual Assistant:视觉助手,可以用如LLaVA、Qwen-VL(多任务预训练数据很好)等模型

在这里插入图片描述

(4)视频学习的微调:视频理解、视频生成、视频字幕生成等
在这里插入图片描述
如video-chatgpt模型(如下),视频具有时序特性,Video-ChatGPT使用预训练的视频编码器将视频分割成多个帧,并提取每一帧的视觉特征。这些视觉特征再经过时序编码,生成包含时序信息的特征向量。用户可以对视频进行提问:
在这里插入图片描述

(5)文档学习的视觉微调:
在这里插入图片描述
如mPLUG-DocOwl模型:
在这里插入图片描述

(6)3D Vision Learning的视觉微调:包括depth estimation, 3D reconstruction(3D重建), object recognition, and scene comprehension(场景理解)等具体任务。

10. 下一步呢?有什么工作可以持续深入?

  • 增强模型在视觉和语言之间的对齐能力
  • 动态场景理解:比如视频、实时流媒体的多模态输入
  • 用于帮助艺术家、设计师进行图像、视频编辑;用于教育领域等

备注:大模型的训练少不了算力资源,博主和一些平台有合作~
高性价比4090算力租用,注册就送20元代金券,更有内容激励活动,点击
GPU云服务器租用,P40、4090、V100S多种显卡可选,点击

Reference

[1] Visual Instruction Tuning towards General-Purpose Multimodal Model: A Survey

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

山顶夕景

小哥哥给我买个零食可好

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值