【4D毫米波雷达技术发展趋势分析】

1、4D 毫米波雷达产品特征及应用前景分析

1.1 4D 毫米波雷达的功能与特征

4D毫米波雷达在3D毫米波雷达检测目标3D信息(雷达与目标的距离、相对径向速度、水平角度的数据)的基础上,增加对目标高度(垂直角度)的估计,相比于3D毫米波雷达具有天线数量多且密度高、输出的点云图像密度更高等特征点。

4D毫米波雷达在距离分辨率、距离精度、角度分辨率、角度精度、速度分辨率和速度精度等方面都有所提升,尤其是在角度分辨率上,目前角度超分辨算法成为了4D毫米波成像雷达的核心竞争力之一!
在这里插入图片描述

4D毫米波雷达与3D毫米波雷达相比的优势如下所示:

(1) 高识别度:更有效”描绘“目标的轮廓,识别目标的类别和行为。更进一步,可识别较小或部分被遮挡以及静止物体或横向运动的目标。

(2)高灵敏度:高度信息的增加可滤除部分误制动的虚警,可避免漏刹车或者误刹车。

(3) 高动态范围:可区分大致同向、大致同距以及大致同速的强弱目标。

(4) 具备更远的探测距离:探测距离将提高到300米以上。

1.2 4D毫米波雷达与其他传感器对比分析

纵向上看,4D毫米波雷达相比于3D毫米波雷达在多项性能上表现更强 ,但成本较高 ,且目前量产验证较少,仅有少量头部雷达企业量产上车。横向上看,4D毫米波雷达相比于其他传感器不仅具有毫米波雷达的传统优缺点 ,而增强了对物体与行人的识别能力 。

在这里插入图片描述

4D毫米波雷达能对普通场景中的目标信息进行更高性能的检测 ,普通场景的覆盖率和处理能力相较于3D毫米波雷达有所提高;同时,4D毫米波雷达在前前车刹车 ,防止连续追尾以及大光比 、恶劣天气等 corner case 场景下能够保持较好的性能。

在这里插入图片描述

1.3 4D 毫米波雷达应用前景分析

1.3.1 对比3D 毫米波雷达

在这里插入图片描述

1.3.2 对比激光雷达

图片

2、4D毫米波雷达技术发展趋势分析

2.1 4D毫米波雷达技术趋势总览

下图是4D毫米波雷达研发所涉及到的技术详细分类,主要分为四大模块:前端射频模块、数字信号处理模块、控制电路、测试与验证。每个模块下面又细分了很多子模块,共同构建了汽车雷达的技术栈。

在这里插入图片描述

2.2 4D毫米波雷达波形设计与对比分析

根据辐射电磁波方式不同 ,毫米波雷达主要分为 脉冲体制 以及 连续波体制 两种工作体制 。

在这里插入图片描述

对于单个静止物体测量,锯齿波即可满足要求,对于运动物体,多采用三角波调制方式。之前,在暗室测量大陆548雷达的发射波形时,发现调频波形有上有下,斜率有正负,我猜测可能是采用的三角波调制(只是猜测,没有证据)。

PMCW (调相连续波方案 )通过多天线同时发射正交相位编码信号的方式来探测目标的距离和速度 ,PMCW方案不仅可以探测更远距离 (有效探测距离可达 500m左右 ) ,同时可以有效抑制雷达与雷达之间的相互干扰 , 4D毫米波雷达形设计中 ,PMCW(调相连续波方案 )逐渐崭露头角 ,其代表雷达芯片企业是美国的Uhnder。

在这里插入图片描述

2.3 4D毫米波雷达天线阵元设计趋势分析

多片级联雷达收发天线大幅增加,若仍采用微带设计思路馈走和复杂度变阵列只能在 x-y方向上布局, 导致雷达面积过大罗杰斯板材使用面积也会变大,成本显著增加;采用波导腔体天线,阵列布局可沿 z方向延伸,相比于微带天线,可以明显减小雷达面积和体积。

因此,多芯片级联技术方案中,波导腔体天线将成为天线阵元设计的趋势,这个非常值得关注。

在这里插入图片描述

4D毫米波雷达比3D毫米波雷达增加俯仰角信息 ,天线阵列设计更为复杂 ,通常是指标间相互制约(比如角度分辨率与角度模糊) ,且与波形设计 、硬件设计 、制造工艺密切相关 。

图片

2.4 4D毫米波雷达信号处理框架变化趋势分析

雷达信号处理最核心工作:依次完成径向距离、径向速度 、方位角的估计问题 (在满足一定条件下都可等价为各自独立频率的估计问题,即线性运算 ),常见的处理架构是 range-Doppler-Angle 或range-Angle-Doppler。但是,4D毫米波雷达引入高度信息 、芯片级联 →信号处理框架更加丰富 (FFT 增加 ),需基于应用场景选择合适的处理框架 。如下图所示:

在这里插入图片描述

4D毫米波雷达信号处理方案设计以扩展目标为最终结果 ,而传统雷达信号处理流程中检测和测角模块是以假设目标为点目标进行设计的 ,传统流程无法实现单帧高密度点云 ,需采用全新的雷达信号处理算法流程 ,其中相干 /非相干积累 、 目标检测 、测角等模块的算法与传统算法存在差异 。

在这里插入图片描述

本部分内容来自于[九章智驾]报告整理,内容非常有价值,由于篇幅太多,后续内容暂不展开,高清无水印版,请在【公众号分享资料清单】中下载。

公众号所有分享的资料都在这个清单中,请周知!

https://docs.qq.com/sheet/DT0RrZGJ6ZlRRc2tm?tab=BB08J2

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

调皮连续波(毫米波雷达)

鼓励调皮哥继续在雷达领域创作!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值