树上子链(树形dp求树的直径)

这篇博客介绍了如何使用树形动态规划(DP)解决树上最大子链的问题,其中包括处理负权值的情况。提供了两种不同的代码实现,一种通过维护最大值和次大值,另一种通过深度优先搜索(DFS)更新最大路径。这些方法能够找到树中权值之和最大的子链。
摘要由CSDN通过智能技术生成

树上子链

题意:

给定一棵树 T ,树 T 上每个点都有一个权值。
定义一颗树的子链的大小为:这个子链上所有结点的权值和 。
请在树 T 中找出一条最大的子链并输出。

题解:

求树的直径,题目中存在负权值,树形dp求树的直径可以处理负边权直径的模板:

void DP(int u,int pa)
{
    dp[u]=0;
    for(int i=head[u];i;i=E[i].nxt)
    {
        int v=E[i].v;
        if(v==pa) continue;
        DP(v,u);
        mxlen=max(mxlen,dp[u]+dp[v]+E[i].dis);//这里直接用一个全部变量更新也可以
        dp[u]=max(dp[u],dp[v]+E[i].dis);
    }
}

另两个dfs也可以求直径,但是负边权不行

代码:

#include<bits/stdc++.h>
#define debug(a,b) printf("%s = %d\n",a,b);
typedef long long ll;
using namespace std;

inline int read(){
   int s=0,w=1;
   char ch=getchar();
   while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
   while(ch>='0'&&ch<='9') s=s*10+ch-'0',ch=getchar();//s=(s<<3)+(s<<1)+(ch^48);
   return s*w;
}
const int maxn=2e5+9;
vector< int>vec[maxn];
ll a[maxn];
ll dp[maxn];
ll ans=-0x3f3f3f;
void get_dp(int u,int fa){
	dp[u]=a[u];
	ans=max(ans,a[u]);
	for(int i=0;i<vec[u].size();i++){
		int v=vec[u][i];
		if(v==fa)continue;
		get_dp(v,u);
		ans=max(ans,dp[u]+dp[v]);
		dp[u]=max(dp[u],dp[v]+a[u]);
	}
}
int main()
{
	int n;
	cin>>n;
	for(int i=1;i<=n;i++){
		cin>>a[i];
	} 
	for(int i=1;i<n;i++)
	{
		int u,v;
		cin>>u>>v;
		vec[u].push_back(v);
		vec[v].push_back(u);
	}
	get_dp(1,-1);
	cout<<ans;
}

这个代码中max1和max2分别表示最大值和次大值

#include<bits/stdc++.h>
#define ll long long 
using namespace std;
int a[100005];
vector<int> G[100005];
int n;
ll ans=-1e16;
ll dp[100005];//以i为根节点,到叶子节点的最大路径 
void dfs(int now,int fa)
{
	ll max1=a[now],max2=a[now];//max1 到叶子节点的最大路径 max2次大路径 
	for(auto t:G[now])
	{
		if(t==fa) continue;
		dfs(t,now);
		if(dp[t]+a[now]>max1)//维护max1 
		{
			max2=max1;
			max1=dp[t]+a[now];
		}
		else if(dp[t]+a[now]>max2)//维护max2
		{
			max2=dp[t]+a[now];
		}		
	}
	dp[now]=max1;
	ans=max(ans,max1+max2-a[now]);	
}
int main()
{
	scanf("%d",&n);
	for(int i=1;i<=n;i++)
	{
		scanf("%d",&a[i]);
	} 
	for(int i=1;i<n;i++)
	{
		int u,v;
		scanf("%d%d",&u,&v);
		G[u].push_back(v);
		G[v].push_back(u);
	}
	dfs(1,0);
	printf("%lld\n",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值