【多人姿态估计】AlphaPose_yolov5复现

本文介绍了一个基于YOLOv5s优化的人体姿态估计与跟踪系统AlphaPose_YOLOv5的实现过程。该系统在Ubuntu 16.04环境下搭建,并详细记录了所需的依赖库版本及安装配置步骤。文中还分享了如何运行demo示例,展示了快速检测与准确的人体姿态估计效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这部分个人已经复现完成:https://github.com/gmt710/AlphaPose_yolovx。大致做个简单的环境记录以及微小的总结吧。

使用yolov5s的速度非常快。但是检测可能会精度上比yolov3-spp差一些。由于自上而下的多人人体姿态估计与跟踪,检测问题会影响最后的送到进行姿态估计的输入,最终影响其性能。

根据分析,基本可以知道Alphapose跟踪用的是目标跟踪与姿态估计。

1.环境

ubuntu16.04
cuda10.1
cudnn7
python3.6

torch==1.7.0
torchvision==0.8.1	
opencv-python==4.1.0.25
tqdm
natsort
Cython
pycocotools
scipy
terminaltables
wf-pycocotools==2.0.1.1
scikit-image>=0.16.2
googledrivedownloader
protobuf>=3.8.0
websocket-client
python setup.py build develop --user

apt-get update
apt-get -y install python3.6-tk

2.demo运行

python scripts/demo_inference.py --cfg configs/coco/resnet/256x192_res50_lr1e-3_2x-dcn.yaml --checkpoint pretrained_models/fast_dcn_res50_256x192.pth --indir examples/demo/ --vis --showbox --save_img --pose_track --sp --vis_fast --detector yolov5

评论 144
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

聿默

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值