图像空间滤波
图像灰度处理是对图像单点的处理,对图像在对比度、亮度等方面进行增强。
空间滤波利用像素周围邻域的像素信息,对图像的灰度进行处理。其目的主要有:
**(1)去噪**:在成像的过程中,由于传感器的噪声或者成像环境的因素,相机获得的图像经常会存在噪声。为了减弱噪声,需要设计合适的图像滤波算法。
**(2)特征提取:**为了从图像中提取特征,如点特征、线特征或边缘特征,也需要有对应的滤波器。
**(3)图像增强:**在有些应用中,需要对图像进行细节增强,如锐化,使得图像边缘更加锐利。
1 卷积滤波
卷积滤波是空间滤波的基础,平滑滤波、锐化滤波等均可以通过卷积滤波实现,不同功能能的滤波器,其区别在于卷积核的不同,设计不同的卷积核,实现不同的滤波需求。卷积滤波可以使用并行加速。
卷积滤波和卷积神经网络的区别在于:卷积滤波的卷积核是人工设计的,卷积神经网络的卷积核参数是训练得到的。
2 均值滤波
**各向异性:**倾斜方向的结构和水平方向或垂直方向的结构,在应用同一个滤波器时,会经历不一样的平滑处理。
上图中,b中白色竖条占两个像素,白色占一个像素,均值之后的到c;
d图的黑白竖条均占一个像素,均值之后的到e.
3 高斯平滑滤波
高斯滤波器为**各向同性**,作用为:对图像去噪、使图像平滑
上图左侧为二维高斯函数图像,右侧为三维高斯函数图像。
特点:
(1) 各向同性、对称、可分离,可分离:二维图像高斯滤波,可以先在水平方向进行一维高斯滤波,之后在竖直方向滤波,可以提升率比效率,加速算法。
(2)最理想的平滑滤波器
已知高斯卷积核如何计算权重,如下图:
上图左侧为3X3的高斯滤波器卷积核,高斯卷积的尺度sigma为1.5,右图为每一个未知的权重,之后对所有的权重进行归一化处理,得:
高斯滤波器滤波的核心参数为:滤波器的尺度sigma,sigma越小输出曲线越尖锐,越大输出曲线越平坦。
4 双边滤波
背景:高斯滤波器能起到去噪的作用,同时也会破坏图像的边缘,边缘不够锐利。双边滤波能去除小结构的噪声,同时能保持大结构良好的边界特征(具有良好边缘保持特性的滤波器)。
双边滤波器的权重由两部分组成:空间项(取决于空间距离)、颜色项(依赖图像颜色差异),两个均为高斯函数。
上式,可由下图进行解释:
上图的输入信号,边缘特征明显。第一个权重是空间距离权重,离中心点越近,权重越大;第二个权重为和中心像素点颜色差异的一个权重,例如上部平面中,颜色相近的像素点对中心点的权重越大。两个权重相乘,一方面压制了图像噪声,另一方面边缘结构得到了很好的保持。
双边滤波应用于人脸图像磨皮:
上图,横向为不同颜色权重参数下的效果,竖直方向为空间距离权重尺度。
上图为双边滤波器在3D网格处理中的应用。
5 中值滤波(统计滤波)
针对椒盐噪声(如下图原图所示),若对下图矩阵的192点进行滤波,则计算3X3cn.com矩阵的中值进行滤波
中值滤波去对于**“椒盐”噪声具有很好的去噪效果。
它是使用最广泛的统计排序滤波器**(最大值滤波、最小值滤波)。
统计排序滤波器:
中值滤波器:取排序后位于50%未知的位置的数值;
最小值滤波器:取排序后位于0%未知的位置的数值;
最大值滤波器:取排序后位于100%未知的位置的数值;
6 空间滤波——锐化滤波器
主要用途:
(1)突出图像中的细节,增强被模糊了的细节
(2)印刷中的细微层次强调。弥补扫描对图像的钝化
(3)超声探测成像,分辨率低,边缘模糊,通过锐化来改善
(4)图像识别中,分割前的边缘提取
(5)锐化处理恢复过度钝化、曝光不足的图像
(6)武器中的目标识别、定位
原理:
均值滤波产生钝化的效果,而均值与积分相似,由此而联想到,微分能不能产生相反的效果,即锐化的效果?
6.1 图像微分-图像边缘
光学成像过程的本身具有低通滤波的作用,使边缘变得平缓。
6.2 数字微分
对于一阶微分的定义必须保证以下几点:
(1)在恒定灰度区域的微分值为零;
(2)在灰度台阶(跳跃)或斜坡处的微分值非零:
(3)沿斜坡的微分值非零;
对于二阶微分的定义都必须保证以下几点:
(1)在恒定灰度区域的微分值为零;
(2)在灰度台阶或斜坡处的起点处,微分值非零;
(3)沿斜坡的微分值为零;
水平方向一阶微分定义为:右边的像素点的灰度值-当前像素点的灰度值
水平方向二阶微分定义为:右边的像素点的灰度值+左边的像素点的灰度值-2*当前像素点的灰度值
(1)恒定区域:一阶微分、二阶微分都是零;
(2)斜坡:一阶微分非零,二阶微分为零;
(3)斜坡起点处:二阶微分非零;
(4)零交叉:对于定位边缘很有用,二阶微分异号;
(5)二阶微分:产生由零分开的双边缘;
6.3 锐化滤波器的分类
二阶微分滤波器-拉普拉斯算子
一阶微分滤波器-梯度算子
6.3.1 图像函数的拉普拉斯变换(二阶微分锐化)
上图,a为拉普拉斯算子的卷积核,b为考虑对角元素的拉普拉斯算子卷积核。
拉普拉斯变换对图像增强的基本方法:
拉普拉斯的响应有正有负,用八位的图像(灰度为8)去显示有正有负的图像是很方便的,于是把拉普拉斯变换后的图像进行灰度拉伸,即整体+128,黑色的地方(像素值为0的地方)变为128变成灰色,将灰度平移后的图像和原始图像相加。
灰度变换(平移):将一个像素点的灰度值按照算法数学公式转换成一个新的灰度值,使原来图像的某些部分区域特征增强,使图片变清晰。
6.3.2 一阶微分锐化
梯度计算模板(卷积核/掩模板):所有模板系统总和为0,保证在恒定灰度区域的微分值为0。
Roberts算子:交叉分算子
Sobel算子:
例:利用梯度增强图像边缘
(1)在梯度幅值图像中,边缘缺陷清晰可见;(2)去掉了灰度不变或缓慢变化的阴影(四个角落位置)。