三维视觉原理:图像形成、颜色模型、图像质量评价
声明:该部分内容为观看3D视觉开发者社区相关教学视频的学习记录文本,仅供自己学习记录和个人复习使用,感兴趣的人可以去相关网站观看相关教学视频,网址:https://developer.orbbec.com.cn/v/lecture?tid=26&cid=28
1.图像形成
1.1 图像的简单模型
图像的简单模型可以表示为:
f(x,y)表示图像的亮度,这与光源的入射分量和反射分量相关,入射分量取决于光源(平行光源、点光源),反射分量取决于成像物体的表面特征。
常用的
1.2 平行光源模型(朗伯面假设)
其中:*
I
*代表图片的亮度,E
代表,r
物体表面的反射率(透射率),n
为物体表面点的法线方向,v
物体表面的法线方向与光源方向的夹角,<n,v>
代表两个参数的点积(垂直数值为0)。
1.3 点光源模型(朗伯面假设)
||lij||³
表示光随光传播距离的衰减,衰减关系为平方的倒数,此处为何为三次方?待解决?
2 颜色模型
2.1 数字图像的表示
注意:左上角为原点
2.2 颜色模型
2.2.1 RGB彩色模型
每一种颜色都是0-255,可以表示256³种颜色
应用于图像显示、图像打印
2.2.2 HSI彩色模型
HSI〔Hue-Saturation-Intensity(Lightness),HSI或HSL〕颜色模型用H、S、I三参数描述颜色特性,其中H定义颜色的频率,称为色调;S表示颜色的深浅程度,称为饱和度;I表示强度或亮度。
RGB到HSI模型的推导:
将RGB模型旋转变换,白色在上黑色在下,之后有一任意平面与黑白两点形成的轴线垂直所截取得六边形或三角形的截面。
HSI转换为RGB:
3 数字图像的质量
3.1 分辨率
分辨率是指纵横向上的像素点数,决定图像的大小
左侧图片为不同分辨率图片,右侧为不同分辨率图片相同尺寸对比图。
3.2 灰度等级
一般图像为模拟图像(可以理解为由线条和颜色块组成的图像,是连续性的模拟量),图像数字化处理就是图像在空间坐标和光强度上进行离散化处理,分割成一个个称为像素的小区域,
空间坐标的离散化——图像采样;对光强(幅度)做离散化处理——灰度级量化(取整),8比特256个灰度等级。
彩色图像不同灰度等级下的对比:
3.3 对比度
一幅图像中灰度反差的大小。例如:亮的地方很亮,暗的地方很暗,即认为有一个比较好的对比度。例如下图,左边图片对比度较好。
3.4 清晰度
清晰度相关的主要因素有:亮度、对比度、分辨率、细微层次、颜色饱和度。
亮度变化:(亮度降低前后对比)
上图,左侧图片亮度适中,右侧曝光严重,大多数像素值为255
对比度:前后变化见3.3
分辨率低,丢失细节
细微层次:(调焦的影响,没对好焦距,图像细节模糊)
颜色饱和度:
3.5 对比度和饱和度的区别
一、主体区别
1、对比度:指的是最高亮度和最低亮度的比值。当图像对比度越高时,那么图像明暗差异越明显。
2、饱和度:指的是色彩的纯正程度。当图像的饱和度越高时,那么图像色彩越鲜艳。
二、特点区别
1、对比度:图像色彩差异范围越大代表对比度越大,反之则代表对比度越小。当对比度达到120:1时,就可容易地显示生动、丰富的色彩;而当对比度高达300:1时,便可支持各阶的颜色。
2、饱和度:饱和度取决于该色中含色成分和消色成分(灰色)的比例。含色成分越大,饱和度越大;消色成分越大,饱和度越小。
三、作用区别
1、对比度:对比度越大,图像越清晰醒目,色彩也越鲜明艳丽;反之,则会让整个画面都灰蒙蒙的。高对比度对于图像的清晰度、细节表现、灰度层次表现都有很大帮助。
2、饱和度:色度由光度线强弱和在不同波长的强度分布有关。最高的色度一般由单波长的强光达到,在波长分布不变的情况下,光强度越弱则色度越低。
上图为:原图、原图降低对比度、原图降低饱和度