三维视觉之数字图像处理基础(五) 图像几何变换

图像几何变换

1 图像几何变换模型

在这里插入图片描述
刚性变换有三个参数:旋转角度θ、平移向量(tx,ty),刚性变换不改变图像内部结构的长度和角度。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
相似变换有四个参数:旋转角度θ、平移向量(tx,ty)、尺度变换参数s。相当于图像的旋转平移缩放变换组合。
在这里插入图片描述
仿射变换有六个参数:线性变换参数abcd,平移向量(tx,ty)。会改变目标结构的长度,也会改变角度,但是原有结构里面平行关系的结构会的到保持,例如上图平行四边形,平行的边依然保持平行。
在这里插入图片描述
仿射变换参数求解
在这里插入图片描述
例子:
在这里插入图片描述
投影变换(透视变换):有8个自由度,经常应用于图像拼接,用相机拍摄后的图片就存在透视变换。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2 图像插值

为什么需要图像插值?:图像旋转或者缩放之后,对于坐标位置(x,y),x、y不是整数,如何获取(x,y)处的图像灰度值?

在这里插入图片描述
在这里插入图片描述

2.1 一维线性插值

在这里插入图片描述

2.2 双线性插值

在这里插入图片描述
在水平和竖直方向做两次线性插值。
在这里插入图片描述
上图,从左向右为:6464像素的图像、最近邻差值后512512像素的图像、双线性插值512*512像素的图像

3 应用举例

3.1 无人机图像拼接

图像拼接可以将无人机获得的多张图像拼接成视场更大的图像,以获得更好的整体感知效果。随着待拼接的图像数量的增加,普通的基于两两配准的图像拼接方法得到的拼接结果变形会越来越严重(几何配准的累计误差、场景非平面等因素)。
为了得到好的拼接结果,通常需要引入GPS/IMU、GCP等信息获取相机姿态;或者利用卫星图像作为基准图像,把拼接图像与参考图像配准后,叠加在参考图像上。
如果这些信息都不可用,对于成百上千的待拼接图像,如何获得良好的拼接结果?
在这里插入图片描述
在这里插入图片描述
图像变换为投影变换,拼接目标函数的数据项表示配准的特征点之间的距离(越小越好);正则项为了保持图像变换尽量为刚性变换的模型,所以g和h要尽量为0,这样abcd趋向一个刚性变换(整个变换矩阵趋向于一个旋转矩阵),由旋转矩阵可得:正则项的前三项表示相互正交且模为1。

拼接流程:
在这里插入图片描述
在这里插入图片描述

1、对多幅输入的图像进行特征提取和匹配,上图用到sift特征提取。
2、初始化特征变换,初始化为了效率,采用仿射变形参数
3、全局优化,
4、特征融合,消除拼接缝

随机采样一致性算法(RANSAC)
模型参数拟合时,数据中经常会有噪声。
在这里插入图片描述
RANSAC算法思想:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
进行K次采样,根据模型获得的支持度参数,将点进行分类:
在这里插入图片描述
此时的模型,获得了最大的支持度,支持这个模型的点称为“内点”。用所有的内点,重新拟合一个参数,作为最终的拟合参数。
在这里插入图片描述
RANSAC算法是一个鲁棒的参数拟合算法
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
本书是数字图像处理经典著作,作者在对32个国家的134个院校和研究所的教师,学生及自学者进行广泛调查的基础上编写了第三版。除保留了第二版的大部分主要内容外,还根据收集的建议从13个方面进行了修订,新增400多幅图像,200多个图表和80多道习题,同时融入了来本科学领域的重要发展,使本书具有相当的特色与先进性。全书分为12章,包括绪论,数字图像基础,灰度变换与空间滤波,频域滤波,图像复原与重建,彩色图像处理,小波及多分辨率处理,图像压缩,形态学图像处理图像分割,表现与描述,目标识别。 目录编辑 前言15 致谢19 书籍网站20 关于作者21 第1章引言23 1.1什么是数字图像处理?23 1.2数字图像处理的起源25 1.3使用数字图像处理的字段示例29 1.3.1伽马射线成像30 1.3.2 X射线成像31 1.3.3紫外线带成像33 1.3.4可见光和红外波段成像34 1.3.5微波波段40成像 [1] 1.3.6无线电频段的成像42 1.3.7使用其他成像模式的示例42 1.4数字图像处理的基本步骤47 1.5图像处理系统的组件50 摘要53 参考文献和进一步阅读53 第2章数字图像基础知识57 2.1视觉感知的要素58 2.1.1人眼结构58 2.1.2眼睛中的图像形成60 2.1.3亮度适应和歧视61 2.2光和电磁谱65 2.3图像传感和采集68 2.3.1使用单个传感器进行图像采集70 2.3.2使用传感器条带获取图像70 2.3.3使用传感器阵列进行图像采集72 2.3.4简单的图像形成模型72 2.4图像采样和量化74 2.4.1采样和量化的基本概念74 2.4.2代表数字图像77 2.4.3空间和强度分辨率81 2.4.4图像插值87 2.5像素之间的一些基本关系90 2.5.1像素的邻居90 2.5.2邻接,连通性,区域和边界90 [1] 2.5.3距离措施93 2.6数字图像处理中使用的数学工具简介94 2.6.1数组与矩阵运算94 2.6.2线性与非线性操作95 2.6.3算术运算96 2.6.4设置和逻辑操作102 2.6.5空间操作107 2.6.6矢量和矩阵运算114 2.6.7图像变换115 2.6.8概率方法118 [1] 摘要120 参考文献和进一步阅读120 问题121 第3章强度变换和空间过滤126 3.1背景127 3.1.1强度变换和空间滤波的基础127 3.1.2关于本章中的示例129 3.2一些基本的强度转换函数129 3.2.1图像底片130 3。2。2日志转换131 3.2.3幂律(Gamma)变换132 3.2.4分段线性变换函数137 3.3直方图处理142 3.3.1直方图均衡144 3.3.2直方图匹配(规范)150 3.3.3局部直方图处理161 3.3.4使用直方图统计进行图像增强161 3.4空间过滤的基本原理166 3.4.1空间过滤机制167 3.4.2空间相关和卷积168 3.4.3线性滤波的矢量表示172 3.4.4生成空间滤波器掩码173 3.5平滑空间滤波器174 3.5.1平滑线性滤波器174 3.5.2订单统计(非线性)过滤器178 3.6锐化空间滤波器179 3.6.1基金会180 3.6.2使用二阶导数进行图像锐化 - 拉普拉斯算子182 3.6.3反锐化掩码和高增强滤波184 3.6.4使用一阶导数(非线性)图像锐化 - 梯度187 3.7组合空间增强方法191 [1] 3.8使用模糊技术进行强度变换和空间过滤195 3.8.1引言195 3.8.2模糊集理论的原理196 3.8.3使用模糊集200 3.8.4使用模糊集进行强度变换208 3.8.5使用模糊集进行空间过滤211 摘要214 参考文献和进一步阅读214 问题215 第4章频域滤波221 4.1背景222 4.1.1傅立叶级数和变换的简史222 4.1.2关于本章中的示例223 4.2初步概念224 [1] 4.2.1复数224 4.2.2傅立叶级数225 4.2.3冲动及其筛选性能225 4.2.4一个连续变量函数的傅立叶变换227 4.2.5卷积231 4.3采样和采样函数的傅立叶变换233 4.3.1抽样233 4.3.2采样函数的傅立叶变换234 4.3.3抽样定理235 4.3.4别名239 4.3.5采样数据的功能重建(恢复)241 4.4单变量的离散傅里叶变换(DFT)242 4.4.1从采样函数的连续变换中获取DFT 243 4.4.2采样和频率间隔之间的关系245 4.5扩展到两个变量的函数247 4.5.1二维脉冲及其筛选性质247 4.5.2二维连续傅立叶变换对248 [1] 4.5.3二维采样和二维采样定理249 4.5.4图像中的别名250 4.5.5二维离散傅里叶变换及其逆257 4.6二维离散傅立叶变换的一些性质258 4.6.1空间和频率间隔之间的关系258 4.6.2翻译和轮换258 4.6.3周期259 4.6.4对称性属性261 4.6.5傅里叶谱和相角267 4.6.6二维卷积定理271 4.6.7二维离散傅立叶变换特性总结275 4.7频域滤波的基础277 4.7.1频域的附加特性277 4.7.2频域滤波基础279 4.7.3频域滤波步骤摘要285 4.7.4空域和频域过滤之间的对应关系285 4.8使用频域滤波器进行图像平滑291 4.8.1理想的低通滤波器291 4.8.2巴特沃斯低通滤波器295 [1] 4.8.3高斯低通滤波器298 4.8.4低通滤波的其他例子299 4.9使用频域滤波器的图像锐化302 4.9.1理想的高通滤波器303 4.9.2巴特沃斯高通滤波器306 4.9.3高斯高通滤波器307 4.9.4频域308中的拉普拉斯算子 4.9.5反锐化掩模,高增强滤波和高频强调滤波310 4.9.6同态过滤311 4.10选择性过滤316 4.10.1带通和带通滤波器316 4.10.2陷波滤波器316 4.11实施320 4.11.1二维DFT 320的可分离性 4.11.2使用DFT算法计算IDFT 321 [1] 4.11.3快速傅里叶变换(FFT)321 4.11.4关于过滤器设计的一些评论325 摘要325 参考文献和进一步阅读326 问题326 第5章图像恢复和重建333 5.1图像降级/恢复过程的模型334 5.2噪声模型335 5.2.1噪声的空间和频率特性335 5.2.2一些重要的噪声概率密度函数336 5.2.3周期性噪声340 5.2.4噪声参数估算341 5.3仅存在噪声的情况下的恢复 - 空间过滤344 5.3.1平均滤波器344 5.3.2订单统计过滤器347 5.3.3自适应滤波器352 5.4通过频域滤波定期降低噪声357 5.4.1带状过滤器357 [1] 5.4.2带通滤波器358 5.4.3陷波滤波器359 5.4.4最佳陷波滤波360 5.5线性,位置不变的降级365 5.6估算退化函数368 5.6.1通过图像观察估计368 5.6.2通过实验估算369 5.6.3通过建模估算369 5.7反向过滤373 5.8最小均方误差(维纳)滤波374 5.9约束最小二乘滤波379 5.10几何平均滤波器383 5.11从投影中重建图像384 5.11.1引言384 5.11.2计算机断层扫描原理(CT)387 5.11.3投影和Radon变换390 5.11.4傅立叶切片定理396 5.11.5使用平行光束滤波反投影重建397 5.11.6使用扇束滤波反投影进行重建403 摘要409
### 回答1: 数字图像处理是指对数字形式的图像进行各种操作和处理的一门技术。二维傅里叶变换数字图像处理中常用的一种变换方法,主要用于将图像从空间域转换到频域。 在Java中,我们可以使用一些图像处理库来实现二维傅里叶变换。例如,常用的库有OpenCV和ImageJ。这些库提供了丰富的函数和方法用于加载、处理和保存图像,同时也支持二维傅里叶变换。我们可以通过调用相应的函数来完成这一转换。 具体实现二维傅里叶变换的步骤如下: 1. 导入图像处理库。 2. 使用库提供的函数加载图像,并将其转换成灰度图像。这一步骤可以通过将彩色图像的三个通道的像素值取平均来实现。 3. 使用库提供的函数将灰度图像进行二维傅里叶变换。该函数将返回一个表示频域图像的复数数组。 4. 可选的,可以对频域图像进行进一步处理,如滤波、增强等。 5. 使用库提供的函数将频域图像进行逆变换,以得到空域图像。逆变换后的图像通常是一个复数数组,需要进一步处理才能显示。 6. 根据需要,将逆变换后的图像进行调整,如将复数值映射到[0,255]范围内,将实部或虚部与频域作差等。 7. 使用库提供的函数保存处理后的图像。 总的来说,通过以上步骤,我们可以在Java中实现二维傅里叶变换,完成对数字图像的频域分析和处理。这样的变换可以帮助我们提取图像的频域特征,如纹理、边缘等,对于图像处理和分析有着重要的应用。 ### 回答2: 数字图像处理是指利用计算机对图像进行处理和分析的一种技术。其中,二维傅里叶变换数字图像处理中的重要工具之一。它是将图像从像素域转换到频域的一种方法,可以将图像的空间域信息转换为频率域信息,从而实现对图像的频域处理。 在Java中,可以使用Java的图像处理库或者开源库来实现二维傅里叶变换。其中,常用的Java图像处理库有Java Advanced Imaging (JAI)和Java Image Processing Toolkit (JIPT)等。 首先,需要加载原始图像,并将其转换为合适的数据结构。Java中可以使用BufferedImage类来加载和处理图像数据。然后,可以使用合适的库函数来对图像进行二维傅里叶变换。这些库函数会将图像从像素域转换为频域,并返回频域的结果。 接下来,可以对频域的图像进行相应的处理。例如,可以进行频域滤波、频域增强等操作来对图像进行改进或者分析。在Java中,可以使用库函数来实现这些操作。 最后,可以将经过频域处理的图像再次进行反变换,将其从频域转换回像素域。这一步可以使用相应的反二维傅里叶变换库函数来实现。 总之,数字图像处理中的二维傅里叶变换是一种重要的技术,可以提取图像的频域信息并进行相应的处理。在Java中,可以使用相应的图像处理库或者开源库来实现二维傅里叶变换,并通过对频域图像进行处理来改进和分析图像。 ### 回答3: 数字图像处理是利用计算机对图像进行处理的一种技术。二维傅里叶变换数字图像处理中常用的一种方法,它可以将图像从空间域转换到频率域。 在Java中,我们可以使用一些图像处理库来实现二维傅里叶变换。比如,我们可以使用Java中的OpenCV库来进行图像处理操作。 首先,我们需要导入OpenCV库。可以在Java项目的依赖中添加OpenCV库的引用。然后,我们可以使用OpenCV提供的函数来读取图像文件,如imread函数。 接下来,我们可以使用OpenCV库的dft函数来对图像进行二维傅里叶变换。该函数将图像从空间域转换到频率域。我们可以指定变换的尺寸,一般选择与图像大小相同的尺寸。 在得到频率域表示后,我们可以进行一些频域处理操作,如滤波、增强等。然后,我们可以使用OpenCV库的idft函数将图像从频率域转换回空间域。 最后,我们可以使用OpenCV库的imwrite函数将处理后的图像保存到指定的文件中。 总之,利用Java中的OpenCV库,我们可以方便地进行数字图像处理,包括二维傅里叶变换。通过这种方法,我们可以将图像从空间域转换到频率域,进行一系列频域处理操作,并最终将图像转换回空间域,得到处理后的图像

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

钟某某人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值