机械臂算法设计MATLAB|运动学动力学|轨迹规划|路径规划|Simulink

用MATLAB设计机械臂(manipulator)算法

1 机械臂算法概述

在这里插入图片描述

1.1 路径规划 path planing

在这里插入图片描述
常用的路径规划算法有:
(1) RRT(rapidly-exploring random tree)
RRT为最常用的路径规划算法,还有其变种(RRT*,RRT-connect等)。RRT是一种多维空间中高效的规划方法。它以一个初始点作为根节点,通过随机采样增加叶子节点的方式,生成一个随机扩展树。随机扩展树不断增长,直到到达目的位置。
在这里插入图片描述
步骤:
**Step1:**构建多维状态空间(joint space),
**Step2:**构建joint space的障碍检测算法
**Step3:**在joint space应用RRT

1.2 轨迹规划 Trajectory planing

如果我们规定从A到B这个path,必须在特定的时间(t0-t6),经过这7个点。那么这7个点叫waypoints.。轨迹(trajectory)指的是通过这7个点的具体计划(例如什么时间,以什么速度等等)。规划我们如何经过这7个点的算法,叫做轨迹规划(trajectory planning)算法
在这里插入图片描述
分类:任务空间(Task Space)和角度空间(Joint Space)轨迹
Task Space:在任务空间差值,每一步调用逆运动学
Joint Space:在Waypoint调用逆运动学,然后再角度空间差值
在这里插入图片描述

1.3 轨迹跟随 Trajectory Tracking

逆运动学Inverse kinematics和逆动力学 Inverse Dynamics
在这里插入图片描述

在这里插入图片描述
角度空间控制Joint Space Control
最简单的控制方式就是每个关机的位置控制。由于关节控制的是角度。所以叫Joit Space Control(即关节角度控制)。其中inverse dynamics.算出了抵消地球重力和机械臂各个关节运动所需的前馈力矩。反馈部分(feedback)用PID去消除误差。
在这里插入图片描述
任务空间控制Task Space Control
在这种情况下PID仅仅控制机械臂终端的位置(任务空间),通过终端的力矩的Jacobian来算出每个关节的力矩。前馈部分只需要抵消地球重力所需的力矩。
在这里插入图片描述
计算力矩控制Computed Torque Control
利用反馈线性化技术来抵消系统的非线性,也叫**“逆动力学”控制**。是目前最复杂、计算量最大,但也是最精确的轨迹跟随控制算法
在这里插入图片描述

以下是一个简单的机械RRT路径规划MATLAB代码示例: ```matlab function path = rrtPathPlanning(start, goal, obstacles, step_size, max_iterations) tree = Node(start); for iter = 1:max_iterations if rand() < 0.5 random_config = rand(size(start)) * 2 * pi - pi; % 随机生成关节配置 else random_config = goal; % 以目标配置为随机点 end nearest_node = nearestNeighbor(tree, random_config); % 寻找最近的节点 new_config = stepFromTo(nearest_node.configuration, random_config, step_size); % 在最近节点和随机点之间前进一步 if isValidConfiguration(new_config, obstacles) % 检查新配置是否有效 new_node = Node(new_config, nearest_node); tree = [tree new_node]; % 将新节点添加到树中 if norm(new_config - goal) < step_size % 如果新配置接近目标配置 path = getPath(tree, new_node); % 获取路径 return; end end end path = []; % 无法找到路径 end function nearest_node = nearestNeighbor(tree, config) distances = arrayfun(@(node) norm(node.configuration - config), tree); % 计算每个节点与给定配置的距离 [~, index] = min(distances); % 找到最小距离的节点索引 nearest_node = tree(index); end function new_config = stepFromTo(start_config, end_config, step_size) direction = end_config - start_config; distance = norm(direction); if distance <= step_size new_config = end_config; else unit_direction = direction / distance; new_config = start_config + step_size * unit_direction; end end function valid = isValidConfiguration(config, obstacles) % 检查配置是否与障碍物发生碰撞 % 返回true表示有效,false表示无效 end function path = getPath(tree, end_node) path = []; current_node = end_node; while ~isempty(current_node) path = [current_node.configuration; path]; current_node = current_node.parent; end end classdef Node properties configuration % 关节配置 parent % 父节点 end methods function obj = Node(config, parent) obj.configuration = config; obj.parent = parent; end end end ``` 以上代码是一个简单的使用RRT算法进行机械路径规划的示例。你可以根据实际情况进行修改和扩展,例如添加适当的碰撞检测和路径优化方法。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

钟某某人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值