AMASS数据集paper粗读


在这里插入图片描述

建立数据集的目的

  1. 研发基于标准运动捕捉系统(mocap)恢复人的shape和pose的方法,即一套由动捕设备的稀疏点还原3D人体的方法;
  2. 为相关领域(人体动作的计算机视觉和动画制作)提供一个最大的机器学习数据集;
    简而言之,建立一个3D人体的行业标准;

面临问题

mocap的数据集很多,但是各家有各家的数据格式,没法统一使用,团队扩展了MoSh方法,使其可以适配更多的mocap数据集;

MoSh的逻辑

通过稀疏的动捕关键点(marker)恢复稠密的人体模型,其是通过大量的关键点和3D扫描的数据集训练出来的;

MoSh++与前作的区别

模型格式

MoSh输出的人体模型是SCAPE格式表示的,和最新的工业学术界不接轨,MoSh++改用SMPL格式表示;
人体模型以UV map格式给出;

软质衣物

有部分数据来穿了软质衣物的人体,MoSh++使用SMPL的一个衍生模型DMPL;

手部动作

MoSh++增加了手部的建模,使用了与SMPL兼容的MANO手部模型;

finetune

采集了一个marker和同步扫描人体的数据集((Synchronized Scans and Markers,SSM),加强训练;

SMPL的参数量

MoSh用了16个shape参数,MoSh++用了100个shape参数,所以效果更好;

数据集构成

采集场景

  1. 包含了15个已有mocap数据集,时长40小时,包含344个subjects和11265个动作;
  2. 采集自37-91个markers不等,并统一了格式;

数据格式

MoSh时期每一帧包含:

  1. 16个SMPL shape参数,β;
  2. 8个DMPL相关系数,Φ;
  3. 159个SMPL pose参数,θ;
    文章中有时统称为SMPL模型,其实不是严格的SMPL,应该是SMPL官方称为SMPLH的版本加上AMASS团队自己提出的衣物blendshape方法(DMPL);

SMPL+DMPL

在这里插入图片描述

DMPL和SMPL原理一致,比其多一个贴身衣物的Blendshape;
在这里插入图片描述
输入输出的维度;

MoSh和MoSh++的训练

[不是暂时的关注点,或许后续更新]

效果

MoSh++总体建模效果

在这里插入图片描述

针对衣物的效果

MoSh
MoSh++
ground truth
在这里插入图片描述
这个身材太棒了,我严重怀疑AMASS团队物化女性,哈哈

针对手部的效果

在这里插入图片描述

### Amass 的使用方法 Amass 是一款由 OWASP 支持的强大工具,专门用于执行资产发现和网络映射任务。其可靠性和准确性得到了广泛认可,并且由于项目的长期维护和支持特性,使其成为许多专业人士的选择[^3]。 以下是关于如何使用 Amass 进行资产扫描的具体说明: #### 安装 Amass 要开始使用 Amass,首先需要将其安装到本地环境中。可以通过以下命令完成安装过程(以 Go 环境为例): ```bash go install github.com/OWASP/Amass/v3/...@master ``` 如果未安装 Go 编译器,则可以选择下载预编译二进制文件并手动解压至系统路径中。 #### 基本语法与功能介绍 Amass 提供多种子命令来满足不同场景下的需求。最常用的几个选项如下所示: 1. **枚举子域名** 枚举目标域的所有潜在子域是一项基础操作。运行下面这条命令即可实现这一目的: ```bash amass enum -d example.com ``` 此处 `-d` 参数指定待查询的目标域名 `example.com`。该指令会尝试查找与其关联的一切公开可访问的子域名称列表。 2. **配置输入文件** 当面对多个目标时,可以借助配置文件简化流程。创建一个纯文本文档并将各条目逐行列出保存为如 `targets.txt` 文件形式;随后调用参数读取其中的内容作为批量处理依据: ```bash amass enum -df targets.txt ``` 3. **导出结果** 默认情况下,Amass 将输出打印于终端屏幕上。然而,在实际应用过程中往往还需要进一步分析整理所得资料。为此提供了一个方便实用的功能——将最终产物存储成易于解析的形式比如 JSON 或者 CSV 类型的数据集: ```bash amass enum -json output.json -d example.com ``` 4. **自定义字典扩展范围** 如果觉得默认内置词库无法完全覆盖特定行业内的专有名词缩写等情况的话,那么完全可以引入额外定制化版本替代原有设置从而提升命中概率水平。只需准备一份新的单词表存放在合适位置之后再附加相应标志位告知程序加载新资源即可生效: ```bash amass enum -brute -w wordlist.txt -d example.com ``` 5. **集成被动 DNS 数据源** 利用第三方服务增强探测能力也是可行的办法之一。例如启用 VirusTotal API 接口获取更多线索信息等动作均能显著提高工作效率质量标准等方面表现优异程度方面有所体现出来效果更加明显一些时候甚至能够达到事半功倍的效果呢!只需要简单修改几项配置细节就能轻松搞定啦~试试看吧😊 需要注意的是某些高级特性可能涉及到收费订阅计划等问题所以务必提前查阅官方文档确认清楚后再做决定哦! --- ### 示例脚本 为了便于理解整个工作流的实际运作方式,这里给出一段完整的 Python 脚本来演示自动化调用 Amass 并提取关键字段的过程: ```python import subprocess import json def run_amass(domain): result = subprocess.run(['amass', 'enum', '-json', '-', '-d', domain], stdout=subprocess.PIPE, text=True) records = [] for line in result.stdout.splitlines(): record = json.loads(line.strip()) if not any(r['name'] == record['name'] and r['address'] == record.get('address') for r in records): records.append({ 'domain': record['name'], 'ip': record.get('address') }) return records if __name__ == "__main__": domains_to_scan = ["testsite1.local", "testsite2.internal"] all_records = [] for d in domains_to_scan: results = run_amass(d) all_records.extend(results) print(json.dumps(all_records, indent=2)) ``` 上述代码片段展示了如何通过编程接口捕获 Amass 输出并转换为结构化的 JSON 数组格式以便后续加工利用。 ---
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值