基于稀疏动捕捉标记点的三维参数化人体重建-mosh

基于稀疏动捕标记点的Mosh三维人体重建算法

本文基于[1]对基于动捕标记点的三维人体重建算法Mosh进行一个介绍。


一.简介

所谓动捕标记点,也就是光学标记点,在相机拍摄下具有明显的反光特性,易于从图像中获取其位置,进而通过深度恢复的方法获取其三维坐标。此外,笔者之前已发过的很多基于参数化人体的重建文章,均归类为三维人体重建,其实更细分点,归类为三维人体体型+动作捕捉更合适。

二.具体步骤

1.基本定义

图1.所采用的标记点

包含标准的47个黄色表示的Vicon标记点,外加20个橙色标记点,共67个标记点(注:白色点是论文中证明冗余的标记点)

图2.默认标记点、潜在标记点和模拟标记点示意

  • 参数化人体 S(β,θ,γ)S(\beta,\theta,\gamma)S(β,θ,γ)
    β\betaβθ\thetaθγ\gammaγ分别指的是形状参数,姿态参数,全局平移参数。

  • 默认标记点(default position of the markers) viv_ivi
    vi(β)=Sh(i)(β,θ0,γ0)+diNh(i)(β,θ0,γ0)v_ {i} ( \beta )= S_ {h(i)} ( \beta , \theta _ {0} , \gamma_0)+ d_ {i} N_ {h(i)} ( \beta , \theta _ {0}, \gamma _ {0} )vi(β)=Sh(i)(β,θ0,γ0)+diNh(i)(β,θ0,γ0)
    其中,θ0\theta _ {0}θ0 , γ0\gamma_0γ0 表示中性姿态,h(i)h(i)h(i)表示标记点i所对应的在人体模板上的索引,did_ {i}di为标记点中心到人体皮肤表面的预设距离,Nh(i)N_ {h(i)}Nh(i)为法线,为在模板上的初始近似标记点位置,见图2左图中的蓝色点。

  • 潜在标记点(latent markers) m~i\tilde{m}_im

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值