论文阅读笔记《Low-Shot Learning from Imaginary Data》

小样本学习&元学习经典论文整理||持续更新

核心思想

  本文提出一种基于数据增强的小样本学习算法,可以对Prototypical Network和Matching Network等算法进行改进。作者的想法非常直接,对于如何合成图像对数据集进行扩充,本文的主旨是合成的图像既不追求真实,又不追求虚拟,而是尽可能满足分类器的需要。具体来讲,就是把图像合成器(hallucinator)与特征提取网络和分类器放到一个网络中,进行端到端的训练。利用分类的损失,引导图像合成器的训练,使其输出能够满足分类需要的图像,整个流程如下图所示。
在这里插入图片描述
  首先,从训练集 S t r a i n S_{train} Strain中采样得到图片 x x x,然后将其与随机噪声 z z z一起输入到图像合成器 G G G中,生成合成图像 x ′ x' x;将合成图像构成的数据集 S t r a i n G S^G_{train} StrainG与原始的训练集 S t r a i n S_{train} Strain合并起来,构成扩充数据集 S t r a i n a u g S_{train}^{aug} Strainaug,对模型进行训练。得到的损失不仅对模型 h h h的参数进行更新,同时也对图像合成器 G G G的参数进行更新。
  本文提出的图像合成器可以很容易地与Prototypical Network和Matching Network等算法进行结合,不仅如此,作者还在二者的基础上进行改进,提出了Prototype matching networks(PMN)模型。作者指出Matching Network采用的attention LSTM结构不适用于稀有类别,而Prototypical Network不存在这个问题,因为他把类别都压缩为一个原型了。因此作者想结合二者的优势,提出了以下算法
在这里插入图片描述
由上式可以看到,在利用AttLSTM进行匹配之前,先对 g ( x i ) g(x_i) g(xi)按照PN网络中原型计算的方式进行了压缩,这样就避免了MN算法存在的问题,又充分利用了其优势。

实现过程

网络结构

  PN和MN网络结构不再赘述,本文提出的图像合成器就是一个简单的3层MLP。

损失函数

  与PN和MN算法相同。

训练策略

  整个训练过程基本沿用了常见的方法,略有不同的是作者提出可以将“图片属于基础类别还是新类别”作为一种先验知识,引入到类别预测过程中,这样可以提高分类的准确性。
在这里插入图片描述

创新点

  • 在原有算法的基础上增加了图像合成器,以端到端训练的方式,引导生成器合成出所需要的图像,并利用该图像对原数据集进行扩充,达到数据增强的效果
  • 提出PMN模型,充分结合PN和MN算法的优势,并解决了MN算法存在的内部问题

算法评价

  本文算是较早采用数据增强方式的小样本学习算法了,现在看起来其思想和网络结构都非常简单,但许多算法都是受其启发,并在其基础进一步改进而来的,因此本文也具有里程碑式的意义。

如果大家对于深度学习与计算机视觉领域感兴趣,希望获得更多的知识分享与最新的论文解读,欢迎关注我的个人公众号“深视”。在这里插入图片描述

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深视

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值