yolov12的cuda/cudnn/torch(torch-2.2.2+cu121-cp38-cp38-win_amd64.whl)/torchvision环境全安装包

最近yolov12已出,需要根据requirements.txt更新环境,此处通过百度云盘将对应文件存档。文件包括cuda_12.1.0_531.14_windows.exe、cudnn-windows-x86_64-8.9.7.29_cuda12-archive.zip、torch-2.2.2+cu121-cp38-cp38-win_amd64.whl、torchvision-0.17.2+cu121-cp38-cp38-win_amd64和一个用于测试是否安装成功的py文件。

通过网盘分享的文件:cuda12.1+cudnn8+torch2.2.2等5个文件
链接: https://pan.baidu.com/s/1Fkwa96DOC5t2q5vrq_nkyA?pwd=gqt7 提取码: gqt7
yolov12官方地址:https://github.com/sunsmarterjie/yolov12

requirements.txt

torch==2.2.2 
torchvision==0.17.2
flash_attn-2.7.3+cu11torch2.2cxx11abiFALSE-cp311-cp311-linux_x86_64.whl
timm==1.0.14
albumentations==2.0.4
onnx==1.14.0
onnxruntime==1.15.1
pycocotools==2.0.7
PyYAML==6.0.1
scipy==1.13.0
onnxslim==0.1.31
onnxruntime-gpu==1.18.0
gradio==4.44.1
opencv-python==4.9.0.80
psutil==5.9.8
py-cpuinfo==9.0.0
huggingface-hub==0.23.2
safetensors==0.4.3
numpy==1.26.4

安装记录:
1、打开控制面板卸载现有nvidia图形驱动程序,卸载后需要重新启动电脑;
2、右键点击cuda_12.1.0_531.14_windows.exe,以管理员身份运行,安装过程中一路默认;
3、解压cudnn-windows-x86_64-8.9.7.29_cuda12-archive.zip,将三个文件夹复制到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1路径下;
4、命令行pip 安装 torch-2.2.2+cu121-cp38-cp38-win_amd64.whl;
5、命令行pip 安装 torchvision-0.17.2+cu121-cp38-cp38-win_amd64;
6、命令行运行 python test.py,显示如下提示,则顺利安装。
在这里插入图片描述

深度学习pytorch之22种损失函数数学公式和代码定义
深度学习pytorch之19种优化算法(optimizer)解析
深度学习pytorch之4种归一化方法(Normalization)原理公式解析和参数使用
深度学习pytorch之简单方法自定义多种卷积即插即用
用自己的数据训练yolov11目标检测
实时语义分割之BiSeNetv2(2020)结构原理解析及建筑物提取实践
实时语义分割之Deep Dual-resolution Networks(DDRNet2021)原理解析及建筑物提取实践
SegFormer 模型解析:结合 Transformer 的高效分割框架原理及滑坡语义分割实战

Please update your GPU driver by downloading and installing a new version from the URL: http://www.nvidia.com/Download/index.aspx Alternatively, go to: https://pytorch.org to install a PyTorch version that has been compiled with your version of the CUDA driver. (Triggered internally at ../c10/cuda/CUDAFunctions.cpp:108.) return torch._C._cuda_getDeviceCount() > 0 FlashAttention is not available on this device. Using scaled_dot_product_attention instead. Ultralytics 8.3.63 🚀 Python-3.11.11 torch-2.2.2+cu121 CPU (Intel Core(TM) i7-9750H 2.60GHz) YOLOv12n summary (fused): 352 layers, 2,590,824 parameters, 0 gradients Found https://ultralytics.com/images/bus.jpg locally at bus.jpg Traceback (most recent call last): File "/home/zhangchong/anaconda3/envs/yolov12/bin/yolo", line 8, in <module> sys.exit(entrypoint()) ^^^^^^^^^^^^ File "/home/zhangchong/yolov12/ultralytics/cfg/__init__.py", line 983, in entrypoint getattr(model, mode)(**overrides) # default args from model ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/zhangchong/yolov12/ultralytics/engine/model.py", line 560, in predict return self.predictor.predict_cli(source=source) if is_cli else self.predictor(source=source, stream=stream) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/zhangchong/yolov12/ultralytics/engine/predictor.py", line 188, in predict_cli for _ in gen: # sourcery skip: remove-empty-nested-block, noqa File "/home/zhangchong/anaconda3/envs/yolov12/lib/python3.11/site-packages/torch/utils/_contextlib.py", line 35, in generator_context response = gen.send(None) ^^^^^^^^^^^^^^ File "/home/zhangchong/yolov12/ultralytics/engine/predictor.py", line 259, in stream_inference preds = self.inference(im, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/zhangchong/yolov12/ultralytics/engine/predictor.py", line 143, in inference return self.model(im, augment=self.args.augment, visualize=v
03-12
<think>好的,我现在需要解决用户提到的两个问题:FlashAttention不可用以及在运行YOLOv12n预测时出现的traceback错误。首先,我应该分步骤分析可能的原因,并参考提供的引用资料来寻找解决方案。 关于FlashAttention不可用的问题,可能的原因包括安装问题或版本不兼容。用户提到的YOLOv5相关引用中,有提到pillow版本过高导致错误,可能需要降级。类似地,FlashAttention可能需要特定版本的PyTorchCUDA支持。需要检查是否正确安装了FlashAttention,包括依赖项如PyTorch版本、CUDA版本是否匹配。此外,用户可能需要从源码编译安装,或者检查是否有路径问题导致模块无法导入。 接下来处理traceback错误。根据引用[2]和[3],常见的AttributeError或NameError可能是由于模块没有正确安装或函数名称错误。例如,如果错误提示模块没有某个属性,可能是因为安装不完整或版本不对。需要用户提供具体的错误信息,但假设错误类似于模块缺失,可能需要重新安装相关库,或者检查代码中的导入语句是否正确。另外,引用[4]提到pillow版本过高导致的问题,可能需要降级pillow,这也可能适用于其他依赖库。 综合来看,可能的解决步骤包括:1. 确认FlashAttention的安装是否正确,包括检查PyTorchCUDA版本;2. 根据错误日志调整依赖库的版本;3. 重新安装或编译必要的组件;4. 处理YOLOv12n预测时的具体错误,可能需要检查模型文件或数据路径是否正确。需要用户提供更多错误细节,但基于现有信息,可以给出通用的排查步骤。</think>### 解决FlashAttention不可用及YOLOv12n预测的traceback错误 #### 一、FlashAttention不可用问题 1. **检查环境依赖** FlashAttention需要满足特定版本的PyTorch(≥1.12)和CUDA(≥11.3)。使用以下命令验证版本: ```bash python -c "import torch; print(torch.__version__, torch.version.cuda)" ``` 若版本不匹配,需升级或降级PyTorch: ```bash pip install torch==1.13.1+cu116 --extra-index-url https://download.pytorch.org/whl/cu116 ``` 2. **正确安装FlashAttention** - 通过源码编译安装: ```bash pip install flash-attn --no-build-isolation ``` -安装失败,尝试安装预编译版本(需CUDA11.6): ```bash pip install flash-attn --upgrade ``` 3. **验证安装** 运行以下Python代码检查是否成功导入: ```python from flash_attn import flash_attention print("FlashAttention available!") ``` 若报错`ImportError`,需检查Python路径或重新安装[^2][^4]。 --- #### 二、YOLOv12n预测的traceback错误 1. **分析错误类型** - **Case 1: AttributeError(模块缺失函数)** 例如:`AttributeError: module &#39;torch&#39; has no attribute &#39;some_function` **原因**:PyTorch版本不兼容或函数名称变更。 **解决**:更新PyTorch或修改代码调用方式[^3]。 - **Case 2: Pillow版本冲突** 若错误涉及图像处理模块(如`PIL`),可能因pillow版本过高导致。降级到兼容版本: ```bash pip install pillow==9.5.0 # 示例版本 ``` 2. **检查模型权重和路径** - 确保`--weight`参数指向正确的模型文件(如`yolov12n.pt`),路径无空格或特殊字符。 - 使用绝对路径避免相对路径错误: ```bash python detect.py --source /absolute/path/to/images --weight /absolute/path/to/yolov12n.pt ``` 3. **依赖库版本对齐** YOLOv12n可能依赖特定版本的`ultralytics`库。更新到最新版本: ```bash pip install ultralytics --upgrade ``` --- #### 三、通用排查步骤 1. **查看完整错误日志** 根据报错的具体行号定位问题模块,例如: ``` Traceback (most recent call last): File "detect.py", line 25, in <module> from models import YOLO ImportError: cannot import name &#39;YOLO&#39; ``` 此类错误需检查`models`目录是否存在或安装`ultralytics`包[^4]。 2. **创建纯净虚拟环境** 使用conda或venv隔离环境: ```bash conda create -n yolov12n_env python=3.8 conda activate yolov12n_env pip install -r requirements.txt # 安装项目依赖 ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值