最近yolov12已出,需要根据requirements.txt更新环境,此处通过百度云盘将对应文件存档。文件包括cuda_12.1.0_531.14_windows.exe、cudnn-windows-x86_64-8.9.7.29_cuda12-archive.zip、torch-2.2.2+cu121-cp38-cp38-win_amd64.whl、torchvision-0.17.2+cu121-cp38-cp38-win_amd64和一个用于测试是否安装成功的py文件。
通过网盘分享的文件:cuda12.1+cudnn8+torch2.2.2等5个文件
链接: https://pan.baidu.com/s/1Fkwa96DOC5t2q5vrq_nkyA?pwd=gqt7 提取码: gqt7
yolov12官方地址:https://github.com/sunsmarterjie/yolov12
requirements.txt
torch==2.2.2
torchvision==0.17.2
flash_attn-2.7.3+cu11torch2.2cxx11abiFALSE-cp311-cp311-linux_x86_64.whl
timm==1.0.14
albumentations==2.0.4
onnx==1.14.0
onnxruntime==1.15.1
pycocotools==2.0.7
PyYAML==6.0.1
scipy==1.13.0
onnxslim==0.1.31
onnxruntime-gpu==1.18.0
gradio==4.44.1
opencv-python==4.9.0.80
psutil==5.9.8
py-cpuinfo==9.0.0
huggingface-hub==0.23.2
safetensors==0.4.3
numpy==1.26.4
安装记录:
1、打开控制面板卸载现有nvidia图形驱动程序,卸载后需要重新启动电脑;
2、右键点击cuda_12.1.0_531.14_windows.exe,以管理员身份运行,安装过程中一路默认;
3、解压cudnn-windows-x86_64-8.9.7.29_cuda12-archive.zip,将三个文件夹复制到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1路径下;
4、命令行pip 安装 torch-2.2.2+cu121-cp38-cp38-win_amd64.whl;
5、命令行pip 安装 torchvision-0.17.2+cu121-cp38-cp38-win_amd64;
6、命令行运行 python test.py,显示如下提示,则顺利安装。
深度学习pytorch之22种损失函数数学公式和代码定义
深度学习pytorch之19种优化算法(optimizer)解析
深度学习pytorch之4种归一化方法(Normalization)原理公式解析和参数使用
深度学习pytorch之简单方法自定义多种卷积即插即用
用自己的数据训练yolov11目标检测
实时语义分割之BiSeNetv2(2020)结构原理解析及建筑物提取实践
实时语义分割之Deep Dual-resolution Networks(DDRNet2021)原理解析及建筑物提取实践
SegFormer 模型解析:结合 Transformer 的高效分割框架原理及滑坡语义分割实战