目录
1、YOLOv12介绍
长期以来,增强YOLO框架的网络架构一直至关重要,但一直专注于基于cnn的改进,尽管注意力机制在建模能力方面已被证明具有优越性。这是因为基于注意力的模型无法匹配基于cnn的模型的速度。本文提出了一种以注意力为中心的YOLO框架,即YOLOv12,与之前基于cnn的YOLO框架的速度相匹配,同时利用了注意力机制的性能优势。YOLOv12在精度和速度方面超越了所有流行的实时目标检测器。例如,YOLOv12-N在T4 GPU上以1.64ms的推理延迟实现了40.6% mAP,以相当的速度超过了高级的YOLOv10-N / YOLOv11-N 2.1%/1.2% mAP。这种优势可以扩展到其他模型规模。YOLOv12还超越了改善DETR的端到端实时检测器,如RT-DETR /RT-DETRv2: YOLOv12- s比RT-DETR- r18 / RT-DETRv2-r18运行更快42%,仅使用36%的计算和45%的参数。
2、yolov12模型图
3、前提所需
anaconda3、pycharm下载完成(最好不要最新版本,也不要太旧,本人使用2021.3)
4、yolov12模型、权重下载
1.模型下载:github模型下载地址
2.模型权重下载(非必须):下载所需的
直接放yolov12文件夹根目录下
5、环境配置
5.1.下载yolov12所需虚拟环境
打开anaconda prompt
cd进入你下载的yolov12文件夹中
创建yolov12环境:输入 conda create -n yolov12(代表环境名称)python=3.11(使用Python的版本),按y+回车
无脑复制
conda create -n yolov12 python=3.11
进入你刚安装的yolov12环境:conda activate yolov12(你的环境名称)
无脑复制
conda activate yolov12
进入后()会变成你环境名称 (判断是否安装成功)
5.2.下载CUDA(GPU所需)
cuda是连接GPU和模型训练的桥梁,pytorch是进入桥梁那段上坡的路(CPU训练慢,GPU快还好)(最好选择在虚拟环境安装,以下介绍为虚拟机安装过程)
查看cuda最高支持版本,win+R,输入cmd,打开命令窗口,输入nvidia-smi.exe,红框位置为最大可支持安装版本
无脑复制
conda install cudatoolkit=11.8
5.3.下载pytorch(GPU所需)
cuda是连接GPU和模型训练的桥梁,pytorch是进入桥梁那段上坡的路(pytorch库必须和cuda版本匹配)(其实这个在之前下载yolov10虚拟环境已经下载过了,但是为了确保你的pytorch版本和CUDA版本一致,所以这里在从下一遍以确保环境没有问题)
无脑复制(CUDA 11.8)
pytorch有两个安装方案,优先为第一个,因为conda安装会考虑版本协调问题,pip不太会考虑,容易出现版本不协调问题,但是conda安装对网要求很高(可以考虑换源),我给出的意见是先试conda安装,超过15分钟以上安装不了,换pip安装
conda安装
conda install pytorch==2.2.2 torchvision==0.17.2 torchaudio==2.2.2 pytorch-cuda=11.8 -c pytorch -c nvidia
pip安装
pip install torch==2.2.2 torchvision==0.17.2 torchaudio==2.2.2 --index-url https://download.pytorch.org/whl/cu118
或者去pytorch官网查找(只是教你怎么去找你所下载CUDA对应的pytorch,以防下载的别的版本的CUDA)(例如CUDA=11.8),我之前写过yolov10,其中就有,这边就直接引用了(yolov10)
但是考虑yolov12给的版本最好不要换其他的版本,以免出现问题
5.4.下载yolov12依赖库
ultralytics团队把所有的包都已经封装好了,在requirements.txt中
但是要注意前面下载过了cuda和pytorch且txt文件cuda和pytorch为linux版本,要把txt文档中对应给注释掉(具体为前三行加##并保存即可)
安装txt文件中所有的库文件
无脑复制
pip install -r requirements.txt
只要中间不报错即为下载成功
6、pycharm添加解释器
点击文件、设置
找到python解释器,添加新的解释器
找到conda环境、使用现有环境,找到你前面配置的yolov12(环境名称)
还有老版的pycharm,使用应该找Anaconda3\envs\yolov11(环境名称)\python.exe
(用yolov9举例)
点击应用
7、数据集制作
这边去看yolov9的数据集制作就可以,方法相同
YOLOv9最详细教程(训练自己数据集、结构介绍、重点代码讲解)(草履虫都能看懂系列)-CSDN博客
8、训练
训练有很多种训练方式,我挑选的是我认为最为简单的一种,即修改default.yaml文件,然后在终端调用
default.yaml文件在yolov12/ultralytics/cfg文件中
需修改(最好为绝对路径,多仔细看看,容易出错)
模型文件model(yolov12x.yaml(模型文件)位置)
数据文件(训练图片)data(data.yaml文件所在位置)
训练轮次epochs(基本为300)
训练所放图片个数batch(2/4/8/16,看自己电脑量力而行)
训练存储地址和名称name(可不改)
使用GPU训练device:0(重点)(如有两个GPU:[0,1])
预训练权重pretrained(yolov12x.pt(权重文件,要于上面对应,就比如你用yolo10x训练你就必须要yolov12x.pt来作为你的预训练权重)位置,无可以不填)
以yolov10为例
点击终端,输入神秘代码:
yolo cfg=ultralytics/cfg/default.yaml
会报错:TypeError: 'workspace=None' is of invalid type str. Valid 'workspace' types are int (i.e. 'workspace=0') or float (i.e. 'workspace=0.5')这个原因是输入workspace的类型不对,不太懂,看workspace参数是用于 TensorRT 的配置项,它表示 TensorRT 在优化和执行网络时可以使用的最大临时工作内存大小(以 GiB 为单位)。我认为没有什么用,我就直接ctrl+/把这行注释了,有懂得可以留言。
然后就没有什么问题了