目录 3.3基于增强Mosaic的改进实验 3.3.1目标实际尺寸对指标的影响分析 3.3.2改进的Mosaic数据增强 3.3.3增强Mosaic实验结果及分析 3.4基于损失函数改进的小目标检测算法 3.4.1模型损失情况分析 3.4.2改进的损失函数 3.4.3实验结果及分析 基于注意力机制的小目标检测算法研究 4.1深度学习中的注意力机制 4.1.1动态容量网络 4.1.2压缩和激励网络 4.1.3卷积块注意模块 4.2颈部注意力增强改进实验 4.2.1小目标检测注意力问题分析 4.2.2颈部注意力的改进 4.2.3实验结果及分析 4.3特征融合注意力改进实验 4.3.1模型特征融合结构分析 4.3.2特征融合注意力的改进 4.3.3实验结果及分析 4.4改进汇总与消融实验 4.5本文算法与公开算法对比 4.6可视化验证结果 知识拓展 融合NWD_loss的YOLO的木材缺陷检测 数据集的采集&标注和整理 图片的收集 核心代码讲解 loss.py train.py ui.py yolov5-NWD.py models\common.py models\experimental.py 训练结果可视化分析 本文篇幅较长,分为上中下三篇,文章索引详见 基于单阶段网络的小目标检测 基于单阶段网络的小目标检测(中)