圆周运动、一般曲线运动、阿基米德螺旋线

恒长旋转向量的导数

一个恒长旋转向量求导后得到的向量的方向与原向量相比,逆时针旋转了 9 0 ∘ 90^\circ 90 ,而求导后得到的向量的长度与旋转角速度有关。

证明

例如 a ⃗ = ( c o s   θ , s i n   θ ) \vec{a}=(cos \ \theta, \quad sin \ \theta) a =(cos θ,sin θ)
1、对 θ \theta θ 求导
d a ⃗ d θ = ( − s i n   θ , c o s   θ ) = [ c o s ( θ + π 2 ) , s i n ( θ + π 2 ) ] \frac{d\vec{a}}{d\theta}=(-sin\ \theta, \quad cos \ \theta)=[cos(\theta+\frac{\pi}{2}), \quad sin(\theta+\frac{\pi}{2})] dθda =(sin θ,cos θ)=[cos(θ+2π),sin(θ+2π)]
结论:
d a ⃗ d θ \frac{d\vec{a}}{d\theta} dθda a ⃗ \vec{a} a 相比,在方向上逆时针旋转了 90°,长度不变


2、对 t 求导
θ \theta θ 是关于 t t t 的函数, θ = w ⋅ t 或 θ = w ( t ) ⋅ t \theta=w \cdot t \quad 或 \quad \theta=w(t)\cdot t θ=wtθ=w(t)t前者角速度恒定,后者角速度是关于时间的函数。
d a ⃗ d t = d a ⃗ d θ ⋅ d θ d t = [ d θ d t ⋅ c o s ( θ + π 2 ) , d θ d t ⋅ s i n ( θ + π 2 ) ] \frac{d\vec{a}}{dt}=\frac{d\vec{a}}{d\theta} \cdot \frac{d\theta}{dt}=[\frac{d\theta}{dt} \cdot cos(\theta+\frac{\pi}{2}), \quad \frac{d\theta}{dt} \cdot sin(\theta+\frac{\pi}{2})] dtda =dθda dtdθ=[dtdθcos(θ+2π),dtdθsin(θ+2π)]
结论:
所以, d a ⃗ d t \frac{d\vec{a}}{dt} dtda a ⃗ \vec{a} a 相比,在方向上逆时针旋转了 90° ,在长度上变为原来的 w w w 倍,如果 a ⃗ \vec{a} a 作变速圆周运动, d a ⃗ d t \frac{d\vec{a}}{dt} dtda 的长度将会随时间变化。

圆周运动中角速度和线速度的关系

一个质点以原点为圆心作圆周运动,设它的位移由 r 1 ⃗ \vec{r_1} r1 变成 r 2 ⃗ \vec{r_2} r2 ,如下图所示

d r ⃗ d\vec{r} dr 是位移的变化量, d θ d\theta dθ 是弧度增量。
d r ⃗ = r 2 ⃗ − r 1 ⃗ ∣ r 1 ⃗ ∣ = ∣ r 2 ⃗ ∣ = r d\vec{r}=\vec{r_2}-\vec{r_1} \\ \quad \\ |\vec{r_1}|=|\vec{r_2}|=r\\ dr =r2 r1 r1 =r2 =r
d θ d\theta dθ 很小时, ∣ d r ⃗ ∣ ≈ 弧 长 |d\vec{r}| \approx 弧长 dr 根据 弧 度 = 弧 长 半 径 弧度=\frac{弧长}{半径} = ,可得 d θ = ∣ d r ⃗ ∣ r d\theta=\frac{|d\vec{r}|}{r} dθ=rdr ,使用标量表示: d r = d θ ⋅ r dr=d\theta \cdot r dr=dθr ,方程两边同时除以 dt ,得: d r d t = r ⋅ d θ d t \frac{dr}{dt}=r \cdot \frac{d\theta}{dt} dtdr=rdtdθ,则得到: v = w ⋅ r v=w\cdot r v=wr

这只是大小关系,考虑方向,使用叉乘, v ⃗ = w ⃗ × r ⃗ \vec{v} = \vec{w} \times \vec{r} v =w ×r

阿基米德螺旋线

阿基米德螺旋线方程

阿基米德螺旋线的极坐标方程为: r = a θ ( a > 0 ) r=a\theta \quad (a>0) r=aθ(a>0) 这表示极径与 θ \theta θ 是线性关系,成正比。
它的参数方程为:
{ x = r ⋅ c o s   θ = a θ ⋅ c o s   θ y = r ⋅ s i n   θ = a θ ⋅ s i n   θ \begin{cases} x=r \cdot cos \ \theta=a\theta \cdot cos \ \theta \\ y=r \cdot sin \ \theta=a\theta \cdot sin \ \theta \end{cases} {x=rcos θ=aθcos θy=rsin θ=aθsin θ
试图消去参数
x 2 + y 2 = ( a θ ) 2 ⋅ ( s i n 2 θ + c o s 2 θ ) = ( a θ ) 2 其 中 , θ = a r c t a n ( y x ) x^2+y^2=(a\theta)^2 \cdot (sin^2 \theta + cos^2 \theta)=(a\theta)^2 \quad 其中,\theta=arctan(\frac{y}{x}) x2+y2=(aθ)2(sin2θ+cos2θ)=(aθ)2θ=arctan(xy)
这个方程无法化为显函数的形式,所以,最好用极坐标方程或参数方程来表示。我们以 θ \theta θ 为参数,用 matlab 画出它的图像。

syms theta
a=1;
r=a*theta;
x=r*cos(theta);
y=r*sin(theta);
fplot(x,y,[0,50],'LineWidth',1.5);
grid on
axis square

螺旋线的时间导数

r ⃗ \vec{r} r 为螺旋线的位移, d r ⃗ d t = d r ⃗ d θ ⋅ d θ d t \frac{d\vec{r}}{dt}=\frac{d\vec{r}}{d\theta} \cdot \frac{d\theta}{dt} dtdr =dθdr dtdθ .

可见, r ⃗ \vec{r} r 对时间求导只是对 θ \theta θ 求导后乘上一个系数 d θ d t \frac{d\theta}{dt} dtdθ 而已,所以我们研究对 θ \theta θ 的导数,而不是对 t t t 的导数。

对螺旋线的参数方程求导

syms a theta
x=a*theta*cos(theta);
y=a*theta*sin(theta);
dx=diff(x,theta)
dy=diff(y,theta)

结果如下

 
dx =
 
a*cos(theta) - a*theta*sin(theta)
 
 
dy =
 
a*sin(theta) + a*theta*cos(theta)
 
>> 

这可以看成是两个向量的合成,分别为
( a ⋅ c o s   θ , a ⋅ s i n   θ ) (a\cdot cos\ \theta,\quad a \cdot sin\ \theta) (acos θ,asin θ)

( − a θ ⋅ s i n   θ , a θ ⋅ c o s   θ ) = [ a θ ⋅ c o s ( θ + π 2 ) , a θ ⋅ s i n ( θ + π 2 ) ] (-a\theta \cdot sin\ \theta,\quad a\theta \cdot cos \ \theta)= [a\theta \cdot cos(\theta+ \frac{\pi}{2}), \quad a\theta \cdot sin(\theta+\frac{\pi}{2})] (aθsin θ,aθcos θ)=[aθcos(θ+2π),aθsin(θ+2π)]
分别令
{ e t ⃗ = [ a θ ⋅ c o s ( θ + π 2 ) , a θ ⋅ s i n ( θ + π 2 ) ] e n ⃗ = ( a ⋅ c o s   θ , a ⋅ s i n   θ ) \begin{cases} \vec{e_t}=[a\theta \cdot cos(\theta+ \frac{\pi}{2}), \quad a\theta \cdot sin(\theta+\frac{\pi}{2})] \\ \vec{e_n}=(a\cdot cos\ \theta,\quad a \cdot sin\ \theta) \\ \end{cases} {et =[aθcos(θ+2π),aθsin(θ+2π)]en =(acos θ,asin θ)

{ v t ⃗ = d θ d t ⋅ e t ⃗ = w ⋅ e t ⃗ v n ⃗ = d θ d t ⋅ e n ⃗ = w ⋅ e n ⃗ \begin{cases} \vec{v_t}=\frac{d\theta}{dt} \cdot \vec{e_t}=w\cdot \vec{e_t} \\ \vec{v_n}=\frac{d\theta}{dt} \cdot \vec{e_n} =w\cdot \vec{e_n}\\ \end{cases} {vt =dtdθet =wet vn =dtdθen =wen
其中, v n ⃗ \vec{v_n} vn 的方向沿着半径向外,是法向速度, v t ⃗ \vec{v_t} vt 沿着切线,与 v n ⃗ \vec{v_n} vn 垂直,总是指向逆时针方向,是切向速度。

可以看出 w w w 恒定时,切向速度随着 θ \theta θ 的增大而增大,法向速度恒定,此时质点一方面绕着原点作圆周运动,线速度越来越大;另一方面,又以恒定的速度远离原点。

切向速度的规律

这个切向速度与原来的螺旋线方程比起来有什么规律呢?
螺旋线参数方程
{ x = r ⋅ c o s   θ = a θ ⋅ c o s   θ y = r ⋅ s i n   θ = a θ ⋅ s i n   θ \begin{cases} x=r \cdot cos \ \theta=a\theta \cdot cos \ \theta \\ y=r \cdot sin \ \theta=a\theta \cdot sin \ \theta \end{cases} {x=rcos θ=aθcos θy=rsin θ=aθsin θ
切向速度
v t ⃗ = [ a θ ⋅ c o s ( θ + π 2 ) , a θ ⋅ s i n ( θ + π 2 ) ] \vec{v_t}=[a\theta \cdot cos(\theta+ \frac{\pi}{2}), \quad a\theta \cdot sin(\theta+\frac{\pi}{2})] vt =[aθcos(θ+2π),aθsin(θ+2π)]
可以发现,切向速度与螺旋线方程比起来就是逆时针旋转了 π 2 \frac{\pi}{2} 2π 而已。

使用 matlab 画出切向速度的图像

clc;
clear;
close all;

syms theta
a=1;
x=a*theta*cos(theta+pi/2);
y=a*theta*sin(theta+pi/2);
fplot(x,y,[0,pi*2*5],'LineWidth',1.5,'Color','b');%画出切向速度,蓝色
grid on
axis square
hold on
x=a*theta*cos(theta);
y=a*theta*sin(theta);
fplot(x,y,[0,pi*2*5],'LineWidth',1.5,'Color','r');%画出阿基米德螺旋线,红色

切向速度可以使用 v ⃗ = w ⃗ × r ⃗ \vec{v} = \vec{w} \times \vec{r} v =w ×r 的公式。(合速度不行)

1、使用方程组得到 v t v_t vt v t v_t vt 的标量,即它的大小)
{ e t ⃗ = [ a θ ⋅ c o s ( θ + π 2 ) , a θ ⋅ s i n ( θ + π 2 ) ] e n ⃗ = ( a ⋅ c o s   θ , a ⋅ s i n   θ ) \begin{cases} \vec{e_t}=[a\theta \cdot cos(\theta+ \frac{\pi}{2}), \quad a\theta \cdot sin(\theta+\frac{\pi}{2})] \\ \vec{e_n}=(a\cdot cos\ \theta,\quad a \cdot sin\ \theta) \\ \end{cases} {et =[aθcos(θ+2π),aθsin(θ+2π)]en =(acos θ,asin θ)

{ v t ⃗ = d θ d t ⋅ e t ⃗ = w ⋅ e t ⃗ v n ⃗ = d θ d t ⋅ e n ⃗ = w ⋅ e n ⃗ \begin{cases} \vec{v_t}=\frac{d\theta}{dt} \cdot \vec{e_t}=w\cdot \vec{e_t} \\ \vec{v_n}=\frac{d\theta}{dt} \cdot \vec{e_n} =w\cdot \vec{e_n}\\ \end{cases} {vt =dtdθet =wet vn =dtdθen =wen
则标量方程为:
{ v t = w a θ = w 2 a t v n = w a \begin{cases} v_t=wa\theta =w^2at\\ v_n=wa \\ \end{cases} {vt=waθ=w2atvn=wa
2、使用 v ⃗ = w ⃗ × r ⃗ \vec{v} = \vec{w} \times \vec{r} v =w ×r 得到 v t v_t vt
v t = w r = w ⋅ a θ = w a ⋅ w t = w 2 a t v_t=wr=w\cdot a\theta=wa\cdot wt=w^2at vt=wr=waθ=wawt=w2at
这两种方式得到的 v t v_t vt 一样,可见,对于任意的曲线运动,它的切向速度总是适用 v ⃗ = w ⃗ × r ⃗ \vec{v} = \vec{w} \times \vec{r} v =w ×r ,但是它的合速度不能盲目地使用这个公式。

题外话——蚊香线

两条互差 180° 得阿基米德螺旋线就是蚊香得形状

clc;
clear;
close all;

syms theta
a=1;
x=a*theta*cos(theta+pi);
y=a*theta*sin(theta+pi);
fplot(x,y,[0,pi*2*5],'LineWidth',1.5,'Color','b');
grid on
axis square
hold on
x=a*theta*cos(theta);
y=a*theta*sin(theta);
fplot(x,y,[0,pi*2*5],'LineWidth',1.5,'Color','r');

在一个平面上切割两条阿基米德螺旋线,然后横着切两刀,剩下的部分丢掉,把要的部分扒开就是两盘蚊香了。

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值