恒长旋转向量的导数
一个恒长旋转向量求导后得到的向量的方向与原向量相比,逆时针旋转了 9 0 ∘ 90^\circ 90∘ ,而求导后得到的向量的长度与旋转角速度有关。
证明
例如
a
⃗
=
(
c
o
s
θ
,
s
i
n
θ
)
\vec{a}=(cos \ \theta, \quad sin \ \theta)
a=(cos θ,sin θ)
1、对
θ
\theta
θ 求导
d
a
⃗
d
θ
=
(
−
s
i
n
θ
,
c
o
s
θ
)
=
[
c
o
s
(
θ
+
π
2
)
,
s
i
n
(
θ
+
π
2
)
]
\frac{d\vec{a}}{d\theta}=(-sin\ \theta, \quad cos \ \theta)=[cos(\theta+\frac{\pi}{2}), \quad sin(\theta+\frac{\pi}{2})]
dθda=(−sin θ,cos θ)=[cos(θ+2π),sin(θ+2π)]
结论:
d
a
⃗
d
θ
\frac{d\vec{a}}{d\theta}
dθda 与
a
⃗
\vec{a}
a 相比,在方向上逆时针旋转了 90°,长度不变
2、对 t 求导
θ
\theta
θ 是关于
t
t
t 的函数,
θ
=
w
⋅
t
或
θ
=
w
(
t
)
⋅
t
\theta=w \cdot t \quad 或 \quad \theta=w(t)\cdot t
θ=w⋅t或θ=w(t)⋅t前者角速度恒定,后者角速度是关于时间的函数。
d
a
⃗
d
t
=
d
a
⃗
d
θ
⋅
d
θ
d
t
=
[
d
θ
d
t
⋅
c
o
s
(
θ
+
π
2
)
,
d
θ
d
t
⋅
s
i
n
(
θ
+
π
2
)
]
\frac{d\vec{a}}{dt}=\frac{d\vec{a}}{d\theta} \cdot \frac{d\theta}{dt}=[\frac{d\theta}{dt} \cdot cos(\theta+\frac{\pi}{2}), \quad \frac{d\theta}{dt} \cdot sin(\theta+\frac{\pi}{2})]
dtda=dθda⋅dtdθ=[dtdθ⋅cos(θ+2π),dtdθ⋅sin(θ+2π)]
结论:
所以,
d
a
⃗
d
t
\frac{d\vec{a}}{dt}
dtda 与
a
⃗
\vec{a}
a 相比,在方向上逆时针旋转了 90° ,在长度上变为原来的
w
w
w 倍,如果
a
⃗
\vec{a}
a 作变速圆周运动,
d
a
⃗
d
t
\frac{d\vec{a}}{dt}
dtda 的长度将会随时间变化。
圆周运动中角速度和线速度的关系
一个质点以原点为圆心作圆周运动,设它的位移由
r
1
⃗
\vec{r_1}
r1 变成
r
2
⃗
\vec{r_2}
r2 ,如下图所示
d
r
⃗
d\vec{r}
dr 是位移的变化量,
d
θ
d\theta
dθ 是弧度增量。
d
r
⃗
=
r
2
⃗
−
r
1
⃗
∣
r
1
⃗
∣
=
∣
r
2
⃗
∣
=
r
d\vec{r}=\vec{r_2}-\vec{r_1} \\ \quad \\ |\vec{r_1}|=|\vec{r_2}|=r\\
dr=r2−r1∣r1∣=∣r2∣=r
当
d
θ
d\theta
dθ 很小时,
∣
d
r
⃗
∣
≈
弧
长
|d\vec{r}| \approx 弧长
∣dr∣≈弧长 根据
弧
度
=
弧
长
半
径
弧度=\frac{弧长}{半径}
弧度=半径弧长 ,可得
d
θ
=
∣
d
r
⃗
∣
r
d\theta=\frac{|d\vec{r}|}{r}
dθ=r∣dr∣,使用标量表示:
d
r
=
d
θ
⋅
r
dr=d\theta \cdot r
dr=dθ⋅r ,方程两边同时除以 dt ,得:
d
r
d
t
=
r
⋅
d
θ
d
t
\frac{dr}{dt}=r \cdot \frac{d\theta}{dt}
dtdr=r⋅dtdθ,则得到:
v
=
w
⋅
r
v=w\cdot r
v=w⋅r
这只是大小关系,考虑方向,使用叉乘, v ⃗ = w ⃗ × r ⃗ \vec{v} = \vec{w} \times \vec{r} v=w×r
阿基米德螺旋线
阿基米德螺旋线方程
阿基米德螺旋线的极坐标方程为:
r
=
a
θ
(
a
>
0
)
r=a\theta \quad (a>0)
r=aθ(a>0) 这表示极径与
θ
\theta
θ 是线性关系,成正比。
它的参数方程为:
{
x
=
r
⋅
c
o
s
θ
=
a
θ
⋅
c
o
s
θ
y
=
r
⋅
s
i
n
θ
=
a
θ
⋅
s
i
n
θ
\begin{cases} x=r \cdot cos \ \theta=a\theta \cdot cos \ \theta \\ y=r \cdot sin \ \theta=a\theta \cdot sin \ \theta \end{cases}
{x=r⋅cos θ=aθ⋅cos θy=r⋅sin θ=aθ⋅sin θ
试图消去参数
x
2
+
y
2
=
(
a
θ
)
2
⋅
(
s
i
n
2
θ
+
c
o
s
2
θ
)
=
(
a
θ
)
2
其
中
,
θ
=
a
r
c
t
a
n
(
y
x
)
x^2+y^2=(a\theta)^2 \cdot (sin^2 \theta + cos^2 \theta)=(a\theta)^2 \quad 其中,\theta=arctan(\frac{y}{x})
x2+y2=(aθ)2⋅(sin2θ+cos2θ)=(aθ)2其中,θ=arctan(xy)
这个方程无法化为显函数的形式,所以,最好用极坐标方程或参数方程来表示。我们以
θ
\theta
θ 为参数,用 matlab 画出它的图像。
syms theta
a=1;
r=a*theta;
x=r*cos(theta);
y=r*sin(theta);
fplot(x,y,[0,50],'LineWidth',1.5);
grid on
axis square

螺旋线的时间导数
设 r ⃗ \vec{r} r 为螺旋线的位移, d r ⃗ d t = d r ⃗ d θ ⋅ d θ d t \frac{d\vec{r}}{dt}=\frac{d\vec{r}}{d\theta} \cdot \frac{d\theta}{dt} dtdr=dθdr⋅dtdθ .
可见, r ⃗ \vec{r} r 对时间求导只是对 θ \theta θ 求导后乘上一个系数 d θ d t \frac{d\theta}{dt} dtdθ 而已,所以我们研究对 θ \theta θ 的导数,而不是对 t t t 的导数。
对螺旋线的参数方程求导
syms a theta
x=a*theta*cos(theta);
y=a*theta*sin(theta);
dx=diff(x,theta)
dy=diff(y,theta)
结果如下
dx =
a*cos(theta) - a*theta*sin(theta)
dy =
a*sin(theta) + a*theta*cos(theta)
>>
这可以看成是两个向量的合成,分别为
(
a
⋅
c
o
s
θ
,
a
⋅
s
i
n
θ
)
(a\cdot cos\ \theta,\quad a \cdot sin\ \theta)
(a⋅cos θ,a⋅sin θ)
和
(
−
a
θ
⋅
s
i
n
θ
,
a
θ
⋅
c
o
s
θ
)
=
[
a
θ
⋅
c
o
s
(
θ
+
π
2
)
,
a
θ
⋅
s
i
n
(
θ
+
π
2
)
]
(-a\theta \cdot sin\ \theta,\quad a\theta \cdot cos \ \theta)= [a\theta \cdot cos(\theta+ \frac{\pi}{2}), \quad a\theta \cdot sin(\theta+\frac{\pi}{2})]
(−aθ⋅sin θ,aθ⋅cos θ)=[aθ⋅cos(θ+2π),aθ⋅sin(θ+2π)]
分别令
{
e
t
⃗
=
[
a
θ
⋅
c
o
s
(
θ
+
π
2
)
,
a
θ
⋅
s
i
n
(
θ
+
π
2
)
]
e
n
⃗
=
(
a
⋅
c
o
s
θ
,
a
⋅
s
i
n
θ
)
\begin{cases} \vec{e_t}=[a\theta \cdot cos(\theta+ \frac{\pi}{2}), \quad a\theta \cdot sin(\theta+\frac{\pi}{2})] \\ \vec{e_n}=(a\cdot cos\ \theta,\quad a \cdot sin\ \theta) \\ \end{cases}
{et=[aθ⋅cos(θ+2π),aθ⋅sin(θ+2π)]en=(a⋅cos θ,a⋅sin θ)
{
v
t
⃗
=
d
θ
d
t
⋅
e
t
⃗
=
w
⋅
e
t
⃗
v
n
⃗
=
d
θ
d
t
⋅
e
n
⃗
=
w
⋅
e
n
⃗
\begin{cases} \vec{v_t}=\frac{d\theta}{dt} \cdot \vec{e_t}=w\cdot \vec{e_t} \\ \vec{v_n}=\frac{d\theta}{dt} \cdot \vec{e_n} =w\cdot \vec{e_n}\\ \end{cases}
{vt=dtdθ⋅et=w⋅etvn=dtdθ⋅en=w⋅en
其中,
v
n
⃗
\vec{v_n}
vn 的方向沿着半径向外,是法向速度,
v
t
⃗
\vec{v_t}
vt 沿着切线,与
v
n
⃗
\vec{v_n}
vn 垂直,总是指向逆时针方向,是切向速度。
可以看出 w w w 恒定时,切向速度随着 θ \theta θ 的增大而增大,法向速度恒定,此时质点一方面绕着原点作圆周运动,线速度越来越大;另一方面,又以恒定的速度远离原点。
切向速度的规律
这个切向速度与原来的螺旋线方程比起来有什么规律呢?
螺旋线参数方程
{
x
=
r
⋅
c
o
s
θ
=
a
θ
⋅
c
o
s
θ
y
=
r
⋅
s
i
n
θ
=
a
θ
⋅
s
i
n
θ
\begin{cases} x=r \cdot cos \ \theta=a\theta \cdot cos \ \theta \\ y=r \cdot sin \ \theta=a\theta \cdot sin \ \theta \end{cases}
{x=r⋅cos θ=aθ⋅cos θy=r⋅sin θ=aθ⋅sin θ
切向速度
v
t
⃗
=
[
a
θ
⋅
c
o
s
(
θ
+
π
2
)
,
a
θ
⋅
s
i
n
(
θ
+
π
2
)
]
\vec{v_t}=[a\theta \cdot cos(\theta+ \frac{\pi}{2}), \quad a\theta \cdot sin(\theta+\frac{\pi}{2})]
vt=[aθ⋅cos(θ+2π),aθ⋅sin(θ+2π)]
可以发现,切向速度与螺旋线方程比起来就是逆时针旋转了
π
2
\frac{\pi}{2}
2π 而已。
使用 matlab 画出切向速度的图像
clc;
clear;
close all;
syms theta
a=1;
x=a*theta*cos(theta+pi/2);
y=a*theta*sin(theta+pi/2);
fplot(x,y,[0,pi*2*5],'LineWidth',1.5,'Color','b');%画出切向速度,蓝色
grid on
axis square
hold on
x=a*theta*cos(theta);
y=a*theta*sin(theta);
fplot(x,y,[0,pi*2*5],'LineWidth',1.5,'Color','r');%画出阿基米德螺旋线,红色

切向速度可以使用 v ⃗ = w ⃗ × r ⃗ \vec{v} = \vec{w} \times \vec{r} v=w×r 的公式。(合速度不行)
1、使用方程组得到
v
t
v_t
vt(
v
t
v_t
vt 的标量,即它的大小)
{
e
t
⃗
=
[
a
θ
⋅
c
o
s
(
θ
+
π
2
)
,
a
θ
⋅
s
i
n
(
θ
+
π
2
)
]
e
n
⃗
=
(
a
⋅
c
o
s
θ
,
a
⋅
s
i
n
θ
)
\begin{cases} \vec{e_t}=[a\theta \cdot cos(\theta+ \frac{\pi}{2}), \quad a\theta \cdot sin(\theta+\frac{\pi}{2})] \\ \vec{e_n}=(a\cdot cos\ \theta,\quad a \cdot sin\ \theta) \\ \end{cases}
{et=[aθ⋅cos(θ+2π),aθ⋅sin(θ+2π)]en=(a⋅cos θ,a⋅sin θ)
{
v
t
⃗
=
d
θ
d
t
⋅
e
t
⃗
=
w
⋅
e
t
⃗
v
n
⃗
=
d
θ
d
t
⋅
e
n
⃗
=
w
⋅
e
n
⃗
\begin{cases} \vec{v_t}=\frac{d\theta}{dt} \cdot \vec{e_t}=w\cdot \vec{e_t} \\ \vec{v_n}=\frac{d\theta}{dt} \cdot \vec{e_n} =w\cdot \vec{e_n}\\ \end{cases}
{vt=dtdθ⋅et=w⋅etvn=dtdθ⋅en=w⋅en
则标量方程为:
{
v
t
=
w
a
θ
=
w
2
a
t
v
n
=
w
a
\begin{cases} v_t=wa\theta =w^2at\\ v_n=wa \\ \end{cases}
{vt=waθ=w2atvn=wa
2、使用
v
⃗
=
w
⃗
×
r
⃗
\vec{v} = \vec{w} \times \vec{r}
v=w×r 得到
v
t
v_t
vt
v
t
=
w
r
=
w
⋅
a
θ
=
w
a
⋅
w
t
=
w
2
a
t
v_t=wr=w\cdot a\theta=wa\cdot wt=w^2at
vt=wr=w⋅aθ=wa⋅wt=w2at
这两种方式得到的
v
t
v_t
vt 一样,可见,对于任意的曲线运动,它的切向速度总是适用
v
⃗
=
w
⃗
×
r
⃗
\vec{v} = \vec{w} \times \vec{r}
v=w×r ,但是它的合速度不能盲目地使用这个公式。
题外话——蚊香线
两条互差 180° 得阿基米德螺旋线就是蚊香得形状
clc;
clear;
close all;
syms theta
a=1;
x=a*theta*cos(theta+pi);
y=a*theta*sin(theta+pi);
fplot(x,y,[0,pi*2*5],'LineWidth',1.5,'Color','b');
grid on
axis square
hold on
x=a*theta*cos(theta);
y=a*theta*sin(theta);
fplot(x,y,[0,pi*2*5],'LineWidth',1.5,'Color','r');

在一个平面上切割两条阿基米德螺旋线,然后横着切两刀,剩下的部分丢掉,把要的部分扒开就是两盘蚊香了。