单调递增且值域非负的函数

本文介绍了sigmoid函数的0-1值域特性及其求导,扩展到一般指数函数形式,并讨论了softplus函数的连续性和简单求导。通过实例说明如何将这些函数推广到不同底数,适用于神经网络激活函数的选择与理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、sigmoid函数

        函数特点:其值域位于0到1之间,且求导简单。

\tiny f(x)=\frac{1}{1+e^{-x}}, x\in (-\infty ,+\infty ), f(x)\in (0,1)

        图像

        推广:可以使得\tiny e^{-x}推广成\tiny e^{-\alpha x},其中\tiny \alpha的作用是使得以\tiny e为底的指数函数推广到以其他正数为底的指数函数,因为\tiny e^{-\alpha x}=(e^{\alpha})^{-x}。当\tiny \alpha为1时,能够得到标准sigmoid函数,\tiny \alpha的具体数值根据你的实际模型/数据来进行调整。

二、指数函数

        函数特点:指数级增长,求导简单。

\tiny f(x)=e^{x}, x\in (-\infty ,+\infty ), f(x)\in (0,+\infty)

        图像

        推广:推广方法和sigmoid一样,添加一个\tiny \alpha即可,然后变成其他底数的指数函数。

三、softplus函数

        函数特点:像Relu激活函数,但连续性更好,并且求导也简单。

\tiny f(x)=log(1+e^{x}), x\in (-\infty ,+\infty ), f(x)\in (0,+\infty)

        图像

        推广:推广方法和sigmoid一样,添加一个\tiny \alpha即可,然后变成其他底数的指数函数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

飞机火车巴雷特

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值