探索城市空中交通的未来:基于Python的仿真与优化

随着城市空中交通(Urban Air Mobility, UAM)逐渐从科幻走向现实,如何有效管理空域资源和优化无人机调度成为一个极具挑战性的研究方向。本篇博客将带您深入探索如何使用Python构建一个简化版的城市空中交通管理系统仿真环境,通过自定义环境、实现调度策略并评估系统性能,为未来UAM系统的设计提供思路。

1. 为什么选择Python和Gym?

Python 是科学计算和机器学习领域的首选语言,而 OpenAI Gym 则是强化学习研究的标准工具。Gym 提供了灵活的接口设计,允许用户轻松定义自定义环境并进行策略测试。

通过本示例代码,您将学会如何:

  • 使用 Gym 构建一个二维网格化的城市空中交通模拟环境;

  • 实现简单的随机和启发式调度策略;

  • 绘制无人机轨迹和性能统计结果。

2. 仿真环境设计

在仿真环境 CityAirTrafficEnv 中,我们将城市空域离散化为一个 $\text{grid_size} \times \text{grid_size}$ 的网格。无人机通过移动到不同网格点完成从起点到目的地的任务,同时需避免碰撞和延误。

环境核心逻辑

状态空间

每个无人机的状态由以下变量描述:

  • $x, y$:当前位置的坐标;

  • $\text{dest_x, dest_y}$:目标位置的坐标;<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值