利用Eviews进行格兰杰因果检验

1.打开Eviews(点击Create a new Eviews workfile)
在这里插入图片描述
2.在observations输入你的数据的列数
在这里插入图片描述
3.在command中输入data **(data后面是数据列的名称)
在这里插入图片描述
4.在每行列中复制相应的数据
在这里插入图片描述
5.查验原数据是否平稳。
quick-series statistics-unit root test(series name填写需要检验数据列名称),采用ADF检验法
在这里插入图片描述

6.选中需要检验的数据右击,以组的方式打开
在这里插入图片描述
7.点击view-granger causalty test,输入阶数,一般2或3即可。
在这里插入图片描述

8.可看到prob为3.E-08,说明TIM可以granger引起VIS。

EViews单位根检验格兰杰因果检验是经济学中常用的两种统计检验方法。 EViews单位根检验(Unit Root Test)用于检验时间序列数据是否存在单位根(unit root)。单位根表示时间序列变量在长期内存在一个固定的偏离量,即变量趋于不稳定,不能回归到均值。EViews提供多种单位根检验方法,如ADF检验(Augmented Dickey-Fuller Test)、PP检验(Phillips-Perron Test)等。这些方法通过对时间序列数据进行回归分析,判断其是否存在单位根。常用的单位根检验假设检验统计量是t统计量,其值大于临界值时拒绝原假设,即认为序列不存在单位根。 格兰杰因果检验(Granger Causality Test)用于检验两个时间序列变量之间是否存在因果关系。格兰杰因果检验基于向量自回归模型(VAR Model),通过对变量的滞后项进行回归分析,判断是否存在一个变量的滞后项对另一个变量的当期值有显著影响。EViews提供了单向和双向格兰杰因果检验的功能。一般情况下,如果格兰杰因果检验的假设检验统计量的值显著大于临界值,就可以认为两个变量之间存在因果关系。 单位根检验格兰杰因果检验是经济学中常用的时间序列分析方法,可以帮助研究人员判断变量的稳定性以及变量之间的因果关系,对于经济学、金融学等领域的研究具有重要意义。通过EViews软件提供的单位根检验格兰杰因果检验功能,研究人员可以对时间序列数据进行深入分析,更全面地理解数据的特征和关系。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值