微软下一代RAG:GraphRAG

什么是GraphRAG?

GraphRAG是一种基于AI的内容解释和搜索能力。它利用大型语言模型(LLM)解析数据,创建知识图谱,并回答用户关于用户提供的私人数据集的问题。

GraphRAG能做什么?

GraphRAG能够在大量信息中连接信息,并利用这些连接来回答使用关键词和基于向量的搜索机制难以或无法回答的问题。基于前一个问题,它提供了半技术性的、高层次的信息,展示了系统如何为各种用途提供功能。这使得使用GraphRAG的系统可以回答跨越多个文档的问题以及诸如“该数据集中的主要主题是什么?”等主题性问题。

GraphRAG的预期用途是什么?

GraphRAG旨在支持关键的信息发现和分析用例,这些用例中所需的信息分散在许多文档中,信息可能是嘈杂的,混杂着错误和/或虚假信息,或者用户希望回答的问题比底层数据能直接回答的问题更加抽象或具有主题性。

GraphRAG被设计用于用户已经接受过负责任的分析方法培训且预期具备批判性思维的环境中。GraphRAG能够在复杂信息主题上提供高度洞察力,但需要领域专家对生成的答案进行人工分析以验证和补充GraphRAG的响应。
GraphRAG旨在与特定领域的文本数据集一起部署和使用。GraphRAG本身不收集用户数据,但建议用户验证所选LLM的隐私政策。

GraphRAG如何进行评估?使用了哪些指标来衡量性能?
GraphRAG以多种方式进行

### RAGGraphRAG 的比较 #### 架构差异 Retrieval-Augmented Generation (RAG) 结合了检索模型和生成模型的优点,在处理自然语言理解和生成任务时表现出色[^1]。相比之下,GraphRAG不仅继承了RAG的特点,还引入了图结构数据的支持,使得该架构能够更好地捕捉实体之间的关系。 #### 数据表示形式的不同 对于传统文本输入,RAG依赖于预训练的语言模型来编码查询并从大规模文档集合中检索相关信息片段;而GraphRAG则进一步利用图形数据库中的节点和边作为额外的知识源,增强了对复杂关联的理解能力。 #### 应用场景对比 - **通用问答系统** 对于基于纯文本的简单问答回答,标准版RAG已经可以提供令人满意的性能表现。它能够在不牺牲太多效率的情况下实现高质量的回答生成。 - **领域特定应用** 当涉及到更复杂的行业知识或专业知识时,比如医疗保健、法律咨询等领域,则更适合采用GraphRAG方案。因为这类情况下往往存在大量相互联系的概念需要被有效建模,从而提高系统的准确度与可靠性。 ```python # 示例代码展示如何初始化两种不同类型的模型 from transformers import RagTokenizer, RagTokenForGeneration, AutoModelForSeq2SeqLM rag_model_name = "facebook/rag-token-nq" graph_rag_model_name = "custom/graph-rag" tokenizer = RagTokenizer.from_pretrained(rag_model_name) model = RagTokenForGeneration.from_pretrained(rag_model_name) graph_tokenizer = RagTokenizer.from_pretrained(graph_rag_model_name) graph_model = AutoModelForSeq2SeqLM.from_pretrained(graph_rag_model_name) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Soyoger

听说打赏的都进了福布斯排行榜。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值