论文研读|AI生成图像检测发展历程及研究现状

前言:本篇博客系统性梳理AI生成图像检测领域近5年的研究脉络、经典方法以及研究现状。


AIGC检测相关博客如下:

「人工智能生成图像检测」研究及发展现状介绍


发展脉络

鉴于AIGC检测这一领域的发展与AIGC本身的发展密切相关,本篇博客以经典生成模型的问世为时间节点,对相关工作进行介绍。首先通过一条Timeline来宏观了解一下AIGC的发展历史:

在这里插入图片描述
接下来,笔者将对开山之作、经典方法以及前沿工作动态进行详细介绍。

开山之作

最早提出AI生成图像检测的工作应该是University Federico II of Naples研究团队的Detection of GAN-generated Fake Images over Social Networks(WIFS, 2018),作者使用CycleGAN的判别器、隐写分析特征(TIFS 2020)、现有方法和一些经典的CNN网络(如DenseNet)检测互联网中GAN生成的图像,并就上述检测方法对于JPEG压缩的鲁棒性进行了测试。
在这里插入图片描述

经典方法

2019年起,欧美等国的研究团队逐渐加入到AIGC检测的行列中来。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

后记:由于本人研究视野有限,文中内容如果有不当之处,还请各位同行批评指正!


参考资料

  1. https://fdmas.github.io/AIGCDetect/
  2. 针对AIGC检测的鲁棒性测试——常见攻击手段汇总
  3. 论文研读|以真实图像为参考依据的AIGC检测
  4. 论文研读|针对文生图模型的AIGC检测
  5. 《人工智能生成内容模型的数字水印技术研究进展》
### GAN图像生成研究现状 GAN(Generative Adversarial Networks)自提出以来,在图像生成领域取得了显著进展。最新的研究成果表明,通过引入多种改进机制和技术手段,GAN能够生成更加逼真、多样化的图像。 #### 多尺度渐进式生成网络 为了改善传统GAN训练不稳定以及模式崩溃等问题,研究人员开发了多尺度渐进式生成方法。这种方法采用逐步增加生成器输出分辨率的方式,使得模型可以从低频到高频逐渐学习图像特征[^2]。这种策略不仅提高了生成质量,还增强了对抗过程中的稳定性。 #### 风格迁移与控制 StyleGAN及其后续版本展示了如何通过对噪声输入空间进行解耦操作实现对生成图像风格的有效控制。具体来说,这些模型允许用户指定特定属性如姿态、表情等,并据此调整最终输出结果。此外,还有研究探索了基于条件分布的学习框架,进一步提升了可控性和灵活性。 #### 数据效率优化 尽管扩散模型在少量样本条件下表现出色,但针对大规模高质量数据集的应用场景下,GAN仍然具有不可替代的优势。当前工作致力于减少所需标注量的同时保持甚至提高性能水平。例如,一些方案尝试利用未标记的数据辅助监督信号的设计;另一些则聚焦于设计更好的正则化项以促进泛化能力[^1]。 ```python import torch.nn as nn class Generator(nn.Module): def __init__(self, input_dim=100, output_channels=3): super(Generator, self).__init__() # 定义生成器结构... def forward(self, z): # 实现前向传播逻辑... pass # 这里仅展示了一个简单的生成器类定义作为示意, # 实际应用中会涉及更多复杂的组件和细节处理。 ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_Meilinger_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值