论文研读|AI生成图像检测发展历程及研究现状

前言:本篇博客系统性梳理AI生成图像检测领域近5年的研究脉络、经典方法以及研究现状。


AIGC检测相关博客如下:

「人工智能生成图像检测」研究及发展现状介绍


发展脉络

鉴于AIGC检测这一领域的发展与AIGC本身的发展密切相关,本篇博客以经典生成模型的问世为时间节点,对相关工作进行介绍。首先通过一条Timeline来宏观了解一下AIGC的发展历史:

在这里插入图片描述
接下来,笔者将对开山之作、经典方法以及前沿工作动态进行详细介绍。

开山之作

最早提出AI生成图像检测的工作应该是University Federico II of Naples研究团队的Detection of GAN-generated Fake Images over Social Networks(WIFS, 2018),作者使用CycleGAN的判别器、隐写分析特征(TIFS 2020)、现有方法和一些经典的CNN网络(如DenseNet)检测互联网中GAN生成的图像,并就上述检测方法对于JPEG压缩的鲁棒性进行了测试。
在这里插入图片描述

经典方法

2019年起,欧美等国的研究团队逐渐加入到AIGC检测的行列中来。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

后记:由于本人研究视野有限,文中内容如果有不当之处,还请各位同行批评指正!


参考资料

  1. https://fdmas.github.io/AIGCDetect/
  2. 针对AIGC检测的鲁棒性测试——常见攻击手段汇总
  3. 论文研读|以真实图像为参考依据的AIGC检测
  4. 论文研读|针对文生图模型的AIGC检测
  5. 《人工智能生成内容模型的数字水印技术研究进展》
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_Meilinger_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值