前言:本篇博客系统性梳理AI生成图像检测领域近5年的研究脉络、经典方法以及研究现状。
–
AIGC检测相关博客如下:
「人工智能生成图像检测」研究及发展现状介绍
发展脉络
鉴于AIGC检测这一领域的发展与AIGC本身的发展密切相关,本篇博客以经典生成模型的问世为时间节点,对相关工作进行介绍。首先通过一条Timeline来宏观了解一下AIGC的发展历史:
接下来,笔者将对开山之作、经典方法以及前沿工作动态进行详细介绍。
开山之作
最早提出AI生成图像检测的工作应该是University Federico II of Naples研究团队的Detection of GAN-generated Fake Images over Social Networks(WIFS, 2018),作者使用CycleGAN的判别器、隐写分析特征(TIFS 2020)、现有方法和一些经典的CNN网络(如DenseNet)检测互联网中GAN生成的图像,并就上述检测方法对于JPEG压缩的鲁棒性进行了测试。
经典方法
2019年起,欧美等国的研究团队逐渐加入到AIGC检测的行列中来。
后记:由于本人研究视野有限,文中内容如果有不当之处,还请各位同行批评指正!