深度探索 DeepSeek 微调:LoRA 与全参数微调实战指南

在这里插入图片描述

网罗开发 (小红书、快手、视频号同名)

  大家好,我是 展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、Harmony OS、Java、Python等方向。在移动端开发、鸿蒙开发、物联网、嵌入式、云原生、开源等领域有深厚造诣。

图书作者:《ESP32-C3 物联网工程开发实战》
图书作者:《SwiftUI 入门,进阶与实战》
超级个体:COC上海社区主理人
特约讲师:大学讲师,谷歌亚马逊分享嘉宾
科技博主:极星会首批签约作者

摘要

DeepSeek 作为强大的大模型,提供了优质的基础能力,但在某些特定任务上,直接使用预训练模型可能无法满足需求。本篇文章将介绍 LoRA(Low-Rank Adaptation)、全参数微调 等微调策略,并提供详细的代码示例,帮助开发者高效定制 DeepSeek 以适应特定任务。

为什么要微调 DeepSeek?

虽然 DeepSeek 具备强大的通用能力,但在特定任务(如医学、法律、金融等领域),直接使用可能会导致:

  • 模型泛化能力不足:无法精准理解专业术语或行业特定语言风格。
  • 推理性能欠佳:无法高效完成某些需要深度推理的任务。
  • 资源浪费:直接使用完整大模型进行训练需要极高计算资源。

因此,采用高效微调策略(如 LoRA、全参数微调)可以在减少计算资源消耗的同时,实现高效定制化优化

常见微调策略

  1. LoRA(低秩适配)

    • 适用于 计算资源有限 的场景。
    • 只对部分权重进行低秩矩阵更新,减少显存占用
    • 训练速度快,适合小样本微调。
  2. 全参数微调(Full Fine-tuning)

    • 适用于 计算资源充足,任务复杂 的场景。
    • 对模型所有参数进行更新,适用于大规模数据训练
    • 训练成本高,但微调效果最佳。

LoRA 微调 DeepSeek

LoRA(Low-Rank Adaptation)是一种高效的参数高效微调方法。其核心思想是在预训练权重的基础上添加可训练的低秩适配层,从而减少计算开销。

环境准备

安装依赖
pip install torch transformers peft accelerate
加载 DeepSeek 模型
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "deepseek-ai/deepseek-mistral-7b"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

LoRA 配置

from peft import LoraConfig, get_peft_model

# 配置 LoRA 训练参数
lora_config = LoraConfig(
    r=8,  # 低秩矩阵的秩
    lora_alpha=32,  # LoRA 缩放因子
    lora_dropout=0.1,  # dropout 率
    bias="none",
    target_modules=["q_proj", "v_proj"],  # 仅对部分层进行微调
)

# 应用 LoRA
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()

训练 LoRA**

from transformers import Trainer, TrainingArguments

training_args = TrainingArguments(
    output_dir="./lora_model",
    per_device_train_batch_size=4,
    num_train_epochs=3,
    save_steps=100,
    logging_dir="./logs",
)

trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=my_train_dataset,  # 替换为你的数据集
)
trainer.train()

全参数微调 DeepSeek

全参数微调适用于 数据量大任务复杂 的场景,需要对模型所有参数进行更新,计算资源消耗较高。

环境准备

pip install deepspeed transformers torch

加载 DeepSeek 模型

from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "deepseek-ai/deepseek-mistral-7b"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

配置训练参数

from transformers import TrainingArguments

training_args = TrainingArguments(
    output_dir="./full_finetune",
    per_device_train_batch_size=2,
    num_train_epochs=3,
    save_strategy="epoch",
    report_to="tensorboard",
    logging_dir="./logs",
    deepspeed="./ds_config.json"  # DeepSpeed 加速
)

训练模型

from transformers import Trainer

trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=my_train_dataset,  # 替换为你的数据集
)
trainer.train()

LoRA vs. 全参数微调

方式计算资源适用场景
LoRA轻量级微调,适合小数据集
全参数微调需要强大计算资源,适合大规模训练

QA 环节

Q1: LoRA 训练后如何推理?

from peft import PeftModel

# 加载微调后的模型
fine_tuned_model = PeftModel.from_pretrained(model, "./lora_model")
fine_tuned_model.eval()

input_text = "DeepSeek 在 NLP 领域的应用有哪些?"
inputs = tokenizer(input_text, return_tensors="pt")

output = fine_tuned_model.generate(**inputs)
print(tokenizer.decode(output[0], skip_special_tokens=True))

Q2: 如何加速全参数微调?

可以结合 DeepSpeedFSDP(Fully Sharded Data Parallel) 进行优化:

{
  "zero_optimization": {
    "stage": 2,
    "offload_optimizer": "cpu",
    "offload_param": "none"
  }
}

并在 TrainingArguments 中启用:

training_args = TrainingArguments(deepspeed="./ds_config.json")

总结

  • LoRA 适用于计算资源有限的场景,通过低秩适配微调模型关键层,减少训练开销。
  • 全参数微调适用于大规模训练任务,但计算资源消耗大,适合计算能力强的环境。
  • 结合 DeepSpeed、FSDP 可优化全参数微调的训练效率

未来展望

  • 探索 PEFT(Parameter-Efficient Fine-Tuning)优化方案
  • 结合 RLHF(人类反馈强化学习)优化微调效果
  • 探索更高效的模型量化(如 QLoRA)以降低部署成本

参考资料

### 对 DeepSeek 模型进行微调训练 对于希望对 DeepSeek 模型执行微调操作的情况,可以采用基于 transformers 和 peft 的 LoRA 方法来实现这一目标。LoRA(Low-Rank Adaptation)是一种高效的参数高效迁移学习方法,在不改变原模型权重的情况下通过引入低秩矩阵来进行适应调整。 #### 准备环境依赖项安装 确保已经设置好 Python 环境并安装必要的库: ```bash pip install torch transformers accelerate loralib datasets evaluate ``` #### 加载预训练模型和分词器 加载要用于微调的基础 DeepSeek-7B-chat 模型及其对应的分词工具[^1]: ```python from transformers import AutoModelForCausalLM, AutoTokenizer base_model_name_or_path = "deepseek-7B-chat" tokenizer = AutoTokenizer.from_pretrained(base_model_name_or_path) model = AutoModelForCausalLM.from_pretrained(base_model_name_or_path) ``` #### 配置 LoRA 参数 定义 LoRA 层的具体配置,比如 rank 大小以及应用的位置等: ```python import bitsandbytes as bnb config_lora = { 'r': 8, 'lora_alpha': 32, 'target_modules': ["q_proj", "v_proj"], 'lora_dropout': 0.05, } ``` #### 应用 LoRA 到模型上 利用 `peft` 中提供的功能将上述配置应用于选定的 Transformer 架构之上: ```python from peft import get_peft_config, PeftType, prepare_model_for_kbit_training peft_type = PeftType.LORA peft_config = get_peft_config(peft_type=peft_type, **config_lora) # 将模型转换为适合 k-bit 训练的形式,并添加 LoRA 变换层 model = prepare_model_for_kbit_training(model) model = model.get_submodule('transformer') model = PeftModelForCausalLM(model, peft_config) ``` #### 数据集准备 准备好用于微调的数据集,通常这会涉及到特定领域内的对话数据或者其他形式的任务导向样本集合。假设有一个名为 `my_dataset.json` 文件存储着这些样例,则可以通过如下方式读取它作为 PyTorch Dataset 使用: ```python from datasets import load_dataset dataset = load_dataset('json', data_files='path/to/my_dataset.json')['train'] tokenized_datasets = dataset.map(lambda examples: tokenizer(examples['text']), batched=True) data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False) ``` #### 设置 Trainer 并启动训练过程 最后一步就是创建 Hugging Face 提供的 `Trainer` 类实例,并指定相应的超参选项以开始实际的训练流程: ```python from transformers import TrainingArguments, Trainer training_args = TrainingArguments( output_dir="./results", evaluation_strategy="epoch", learning_rate=2e-5, per_device_train_batch_size=4, gradient_accumulation_steps=4, num_train_epochs=3, weight_decay=0.01, logging_dir='./logs', report_to="none" ) trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_datasets.shuffle().select(range(10_000)), # 这里仅选取前一万条记录做示范用途 eval_dataset=None, data_collator=data_collator ) trainer.train() ``` 完成以上步骤之后就可以对 DeepSeek 模型实施有效的微调处理了。值得注意的是,具体细节可能会依据所使用的硬件资源和个人需求有所不同,因此建议根据实际情况灵活调整各项设定。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

网罗开发

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值