凸优化简介3

本文介绍了非线性优化中的松弛思想,通过一阶和二阶近似来寻找局部最小值。一阶近似利用泰勒公式探讨了梯度的性质,证明了方向−▽f(x)是最优下降方向;二阶近似讨论了Hessian矩阵及其对局部最小点的影响,展示了变分不等式在优化中的应用。
摘要由CSDN通过智能技术生成

松弛与近似

一般情况下,非线性优化的最简单目标是找到一个可微函数的局部最小。要保证最小化过程的收敛,需要遵循一些特别的原则。
大部分的非线性优化的方法基于松弛的思想,如果序列 { α k } k = 0 ∞ \{\alpha_{k}\}^{\infty}_{k=0} { αk}k=0中, α k + 1 ≤ α k , ∀ k ≥ 0. \alpha_{k+1} \leq \alpha_{k}, \forall{k} \geq 0. αk+1αk,k0.则改序列称为一个松弛序列。
因此,对于一个简单的无约束最小化问题 m i n x ∈ R n f ( x ) min_{x\in \mathbb{R^n}}f(x) minxRnf(x),其中函数 f ( x ) f(x) f(x)是一个光滑函数,为了求解,产生一个松弛序列 { f ( x k ) } k = 0 ∞ \{f(x_k)\}^{\infty}_{k=0} { f(xk)}k=0,其中 f ( x k + 1 ) ≤ f ( x k ) , k = 0 , 1 , … f(x_{k+1}) \leq f(x_k),k=0,1,\dots f(xk+1)f(xk),k=0,1,。函数 f ( x ) f(x) f(x) R n \mathbb{R}^n Rn上是有界单调下降的,因此是收敛的。
在非线性优化中,通常是使用基于该函数的导数来使用局部的一阶和二阶逼近。

1. 一阶近似

首先另函数 f ( x ) f(x) f(x) x = x ~ x=\widetilde{x} x=x 处是可微的,那么根据泰勒展开公式得到 f ( y ) = f ( x ~ ) + ⟨ ▽ f ( x ~ ) , y − x ~ ⟩ + o ( ∥ y − x ~ ∥ 2 ) f(y)=f(\widetilde{x})+\langle \bigtriangledown f(\widetilde{x}),y-\widetilde{x}\rangle + o(\|y-\widetilde{x}\|_{2}) f(y)=f(x )+f(x ),yx +o(yx 2)。其中最后的余项 o ( r ) o(r) o(r)是一个 r ≥ 0 r \geq 0 r0的函数,且满足 l i m r → 0 ( 1 r o ( r ) ) = 0 lim_{r\rightarrow0}(\frac{1}{r}o(r))=0 limr0(r1o(r))=0。公式中的 ⟨ ⟩ \langle \rangle 符号内部两个项相乘的符号。
对于 n n n维空间上的函数,设在点 y i = x ~ + ϵ e i y_i=\widetilde{x}+\epsilon e_i yi=x +ϵei,其中 e i e_i ei是在 R n \mathbb{R}^n Rn上的第 i i i个坐标向量,取极限 ϵ → 0 \epsilon \rightarrow{0} ϵ0,梯度的表达式为 ▽ f ( x ) = ( ∂ f ( x ) ∂ x ( 1 ) , … , ∂ f ( x ) ∂ x ( n ) ) T \bigtriangledown f(x)=(\frac{\partial f(x)}{\partial x^{(1)}},\dots, \frac{\partial f(x)}{\partial x^{(n)}})^T f(x)=(x(1)f(x),,x(n)f(x))T。设函数的层集(level set)记为 L f ( α ) = { x ∈ R n ∣ f ( x ) ≤ α } \mathfrak{L}_f(\alpha)=\{x\in \mathbb{R}^n| f(x) \leq \alpha\} Lf(α)={ xRnf(x)α},记在 x ~ \widetilde{x} x 上与层集 L f ( f ( x ~ ) ) \mathfrak{L}_{f}(f(\widetilde{x})) Lf(f(x ))相切方向的集合为 S f ( x ~ ) = { s ∈ R n ∣ s = l i m y k → x ~ , f ( y k ) = f ( x ~ ) y k − x ~ ∥ y k − x ~ ∥ } S_f(\widetilde{x})=\{s\in \mathbb{R}^n | s=lim_{y_k \rightarrow \widetilde{x}, f(y_k)=f(\widetilde{x})}\frac{y_k-\widetilde{x}}{\|y_k-\widetilde{x}\|}\} Sf

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值