凸优化简介11

本文介绍了在凸优化问题中,如何利用梯度下降的加速方法提高求解效率。具体阐述了Nesterov的加速梯度下降法,并通过引理分析了序列的收敛性和估计序列的构造。此外,还提供了优化方法的一般过程,包括步长计算、yk和xk+1的选取等关键步骤。
摘要由CSDN通过智能技术生成

文章目录

梯度下降加速

考虑一个无约束的最小化问题: min ⁡ x ∈ R N f ( x ) \min\limits_{x\in \mathbb{R}^N}f(x) xRNminf(x),其中函数 f f f是强凸的: f ∈ F μ , L 1 , 1 ( R n ) , μ ≥ 0 f\in \mathfrak{F}_{\mu,L}^{1,1}(\mathbb{R}^n), \mu \geq 0 fFμ,L1,1(Rn),μ0,并且该函数的梯度是 Lipschitz连续的。
梯度方法构造了一个松弛序列 f ( x k + 1 ) ≤ f ( x k ) f(x_{k+1}) \leq f(x_k) f(xk+1)f(xk),但是,在某些情况下,最佳的方案不依赖于这样的松弛方案。
Nesterov 在1983年发现了对光滑函数的加速梯度下降方法,并在2004年和2007年将加速方法分别推广到非光滑目标函数和组合函数。Nesterov的方法可以归结为一种称为 估计序列的方法。

定义:一对序列 { ϕ k ( x ) } k = 0 ∞ \{\phi_k(x)\}_{k=0}^{\infty} { ϕk(x)}k=0 { λ k } k = 0 ∞ \{\lambda_k\}_{k=0}^{\infty} { λk}k=0 λ k ≥ 0 \lambda_k\geq0 λk0称为函数 f ( x ) f(x) f(x)的一个估计序列,如果 λ k → 0 \lambda_k\rightarrow0 λk0。且对于任意的 x ∈ R n x\in \mathbb{R}^n xRn和所有的 k ≥ 0 k \geq 0 k0,有: ϕ k ( x ) ≤ ( 1 − λ k ) f ( x ) + λ k ϕ 0 ( x ) \phi_k(x)\leq (1-\lambda_k)f(x)+\lambda_k\phi_0(x) ϕk(x)(1λk)f(x)+λkϕ0(x).

引理1:如果对于某个序列 { x k } \{x_k\} { xk},我们有 f ( x k ) ≤ ϕ k ∗ ≡ min ⁡ x ∈ R n ϕ k ( x ) f(x_k)\leq \phi_k^*\equiv \min\limits_{x\in \mathbb{R}^n}\phi_k(x) f(xk)ϕkxRnminϕk(x),那么 f ( x k ) − f ∗ ≤ λ k [ ϕ 0 ( x ∗ ) − f ∗ ] → 0 f(x_k)-f^*\leq \lambda_k[\phi_0(x^*)-f^*]\rightarrow0 f(xk)fλk[ϕ0(x)f]0

证明:根据已知条件以及上面的定义得到 f ( x k ) ≤ ϕ k ∗ = min ⁡ x ∈ R n ϕ k ( x ) ≤ min ⁡ x ∈ R n [ ( 1 − λ k ) f ( x ) + λ k ϕ 0 ( x ) ] ≤ ( 1 − λ k ) f ( x ∗ ) + λ k ϕ 0 ( x ∗ ) f(x_k)\leq \phi_{k}^*=\min\limits_{x\in \mathbb{R}^n}\phi_k(x)\leq \min\limits_{x\in \mathbb{R}^n}[(1-\lambda_k)f(x)+\lambda_k\phi_0(x)]\\ \leq (1-\lambda_k)f(x^*)+\lambda_k\phi_0(x^*) f(xk)ϕk=xRnminϕk(x)xRnmin[(1λk)f(x)+λkϕ0(x)](1λk)f(x)+λkϕ0(x).
应用上面的引理可以得到序列 { λ k } \{\lambda_k\} { λk}的收敛率,但是如何构造估计序列以及如何满足引理。

引理2:假设 1. f ∈ F μ , L 1 , 1 ( R n ) f\in \mathfrak{F}_{\mu,L}^{1,1}(\mathbb{R}^n) fFμ,L1,1(Rn);
2. ϕ 0 ( x ) \phi_0(x) ϕ0(x)是一个在 R n \mathbb{R}^n Rn上的任意函数;
3. { y k } k = 0 ∞ \{y_k\}_{k=0}^{\infty} { yk}k=0是一个在 R n \mathbb{R}^n Rn上的任意序列;
4. { a k } k = 0 ∞ \{a_k\}_{k=0}^{\infty} { ak}k=0 a k ∈ ( 0 , 1 ) , ∑ k = 0 ∞ a k = ∞ a_k\in (0,1),\sum\limits_{k=0}^{\infty}a_k=\infty ak(0,1),k=0ak=
5. λ 0 = 1 \lambda_0=1 λ0=1
那么,序列对 { ϕ k ( x ) } k = 0 ∞ , { λ k } k = 0 ∞ \{\phi_k(x)\}_{k=0}^{\infty},\{\lambda_k\}^{\infty}_{k=0} { ϕk(x)}k=0,{ λk}k=0 k k k递归定义: λ k + 1 = ( 1 − a k ) λ k \lambda_{k+1}=(1-a_k)\lambda_k λk+1=(1ak)λk, ϕ k + 1 ( x ) = ( 1 − a k ) ϕ k ( x ) + a k [ f ( y k ) + ⟨ ∇ f ( y k ) , x − y k ⟩ + μ 2 ∥ x − y k ∥ 2 ] \phi_{k+1}(x)=(1-a_k)\phi_k(x)+a_k[f(y_k)+\langle \nabla f(y_k),x-y_k\rangle+\frac{\mu}{2}\|x-y_k\|^2] ϕk+1(x)=(1ak)ϕk(x)+ak[f(yk)+f(yk),xyk+2μxyk2]是一个估计序列

证明:使用归纳法, ϕ 0 ( x ) ≤ ( 1 − λ 0 ) f ( x ) + λ 0 ϕ 0 ( x ) ≡ ϕ 0 ( x ) \phi_0(x)\leq (1-\lambda_0)f(x)+\lambda_0\phi_0(x)\equiv\phi_0(x) ϕ0(x)(1λ0)f(x)+λ0ϕ0(x)ϕ0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值