凸优化简介2

本文介绍了N维盒子约束问题的全局优化,探讨了均匀网格法求最优值的原理及其复杂度上界和下界。通过分析目标函数的性质,确定了在凸优化问题中寻找全局最优解的复杂度界限。
摘要由CSDN通过智能技术生成

全局优化的复杂度边界

1. N维盒子约束问题

在没有泛函约束的有约束最小化问题 m i n x ∈ B n f ( x ) min_{x\in \mathbb{B}_n}f(x) minxBnf(x)中,该问题的可行集是 B n \mathbb{B}_n Bn,是一个在 n n n维实数集合 R n \mathbb{R}^n Rn上的 n n n维盒子。 B n = { x ∈ R n ∣ 0 ≤ x ( i ) ≤ 1 , i = 1 … n } . \mathbb{B}_n=\{x\in \mathbb{R}^n|0 \leq x^{(i)}\leq 1, i=1 \dots n\}. Bn={ xRn0x(i)1,i=1n}.
在这里插入图片描述

使用 l ∞ \mathcal{l}_{\infty} l范数来测量 R n \mathbb{R}^n Rn中的距离: ∣ ∣ x ∣ ∣ ∞ = m a x 1 ≤ i ≤ n ∣ x ( i ) ∣ ||x||_{\infty}=max_{1\leq i \leq n}|x^{(i)}| x=max1inx(i). 假设对于这个范数,目标函数 f ( x ) f(x) f(x) B n \mathbb{B}_n Bn上是Lipschitz连续的: ∣ f ( x ) − f ( y ) ∣ ≤ L ∣ ∣ x − y ∣ ∣ ∞ , ∀ x , y ∈ B n |f(x)-f(y)|\leq L||x-y||_{\infty}, \forall x,y \in \mathbb{B}_n f(x)f(y)Lxy,x,yBn,其中 L L L是某个Lipschitz常量。

2. 均匀网格法(Uniform Grid Method)求最优值

该方法在可行集 x x x上构造 ( p + 1 ) n (p+1)^n (p+1)n个点: x ( i 1 , … , i n ) = ( i 1 p , i 2 p , … , i n p ) T x_(i_1,\dots,i_n)=(\frac{i_1}{p},\frac{i_2}{p},\dots,\frac{i_n}{p})^T x(i1,,in)=(pi1,pi2,,p<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值