凸优化简介14

本文介绍了在有约束的最小化问题中,如何处理目标函数的梯度,特别是梯度映射的概念。定义了梯度映射gQ(x;γ),并给出了相关定理证明其性质。此外,还探讨了在简单集合上使用梯度方法的迭代过程,以及投影梯度下降的迭代规则。最后,讨论了估计序列和下界,确保迭代过程的有效性。
摘要由CSDN通过智能技术生成

梯度映射 (Gradient Mapping)

在有约束的最小化问题中,目标函数的梯度应该使用不同于无约束的处理方法。对于有约束的最小化问题,可以引入一个目标。

定义:设 γ > 0 \gamma > 0 γ>0,记 x Q ( x ~ ; γ ) = arg min ⁡ x ∈ Q [ f ( x ~ ) + ⟨ ∇ f ( x ~ ) , x − x ~ ⟩ + γ 2 ∥ x − x ~ ∥ 2 ] x_Q(\widetilde{x};\gamma)=\argmin\limits_{x\in Q}[f(\widetilde{x})+\langle \nabla f(\widetilde{x}),x-\widetilde{x}\rangle+\frac{\gamma}{2}\|x-\widetilde{x}\|^2] xQ(x ;γ)=xQargmin[f(x )+f(x ),xx +2γxx 2] g Q ( x ~ , γ ) = γ ⋅ x Q ( x ~ ; γ ) g_Q(\widetilde{x},\gamma)=\gamma\cdot x_Q(\widetilde{x};\gamma) gQ(x ,γ)=γxQ(x ;γ),称 g Q ( x ~ ; γ ) g_Q(\widetilde{x};\gamma) gQ(x ;γ)为函数 f f f Q Q Q上的梯度映射

对于 Q ≡ R n Q\equiv \mathbb{R}^n QRn,有 x Q ( x ~ ; γ ) = x ~ − 1 γ ∇ f ( x ~ ) , g Q ( x ~ ; γ ) = ∇ f ( x ~ ) x_Q(\widetilde{x};\gamma)=\widetilde{x}-\frac{1}{\gamma}\nabla f(\widetilde{x}), g_Q(\widetilde{x};\gamma)=\nabla f(\widetilde{x}) xQ(x ;γ)=x γ1f(x ),gQ(x ;γ)=f(x )。因此, 1 γ \frac{1}{\gamma} γ1可以被看做梯度下降的步长, x ~ → x Q ( x ~ ; γ ) \widetilde{x}\rightarrow x_Q(\widetilde{x};\gamma) x xQ(x ;γ).

定理1:设 f ∈ F μ , L 1 , 1 ( R n ) , γ ≥ L , x ~ ∈ R n f\in \mathfrak{F}_{\mu,L}^{1,1}(\mathbb{R}^n), \gamma\geq L, \widetilde{x}\in \mathbb{R}^n fFμ,L1,1(Rn),γL,x Rn,那么对于任意的 x ∈ Q x\in Q xQ,有:
f ( x ) ≥ f ( x Q ( x ~ ; γ ) ) + ⟨ g Q ( x ~ ; γ ) , x − x ~ ⟩ + 1 2 γ ∥ g Q ( x ~ ; γ ) ∥ 2 + μ 2 ∥ x − x ~ ∥ 2 f(x)\geq f(x_Q(\widetilde{x};\gamma))+\langle g_Q(\widetilde{x};\gamma),x-\widetilde{x}\rangle+\frac{1}{2\gamma}\|g_Q(\widetilde{x};\gamma)\|^2+\frac{\mu}{2}\|x-\widetilde{x}\|^2 f(x)f(xQ(x ;γ))+gQ(x ;γ),xx +2γ1gQ(x ;γ)2+2μxx 2.

证明:设 x Q = x Q ( x ~ ; γ ) , g Q = g Q ( x ~ ; γ ) x_Q=x_Q(\widetilde{x};\gamma), g_Q=g_Q(\widetilde{x};\gamma) xQ=xQ(x ;γ),gQ=gQ(x ;γ) ϕ ( x ) = f ( x ~ ) + ⟨ ∇ f ( x ~ ) , x − x ~ ⟩ + γ 2 ∥ x − x ~ ∥ 2 \phi(x)=f(\widetilde{x})+\langle \nabla f(\widetilde{x}),x-\widetilde{x}\rangle+\frac{\gamma}{2}\|x-\widetilde{x}\|^2 ϕ(x)=f(x )+f(x ),xx +2γxx 2,得到 ∇ ϕ ( x ) = ∇ f ( x ~ ) + γ ( x − x ~ ) \nabla \phi(x)=\nabla f(\widetilde{x})+\gamma(x-\widetilde{x}) ϕ(x)=f(x )+γ(xx ),并且 ⟨ ∇ f ( x ~ ) − g Q , x − x Q ⟩ = ⟨ ∇ ϕ ( x Q ) , x − x Q ⟩ ≥ 0 \langle \nabla f(\widetilde{x})-g_Q, x-x_Q\rangle=\langle \nabla \phi(x_Q),x-x_Q\rangle \geq 0 f(x )gQ,xxQ=ϕ(xQ),x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值