检索增强生成(RAG )是一种结合信息检索与生成模型的混合方法。它通过引入外部知识来提升语言模型的性能,从而提高回答的准确性和事实正确性。为了简单易学,本系列不使用现有框架及向量数据库,而是利用python基本库编写所有技术代码。由简入深!语义分块、混合检索、想问题重写、循环反馈、自适应、HyDE等!
本篇是综合篇,在这个专栏对每种详细技术抛弃现有框架仅利用python基本库实现,加深理解!欢迎订阅,关注我!
文章目录
- 评测结果
- 评测环境
- 评测准备
-
- 导入库
- 开始评测
-
- 简单RAG
- 语义分块
- 上下文增强检索
- 上下文块标题
- 文档增强
- 查询转换
- 重排序器
- RSE
- 上下文压缩
- 反馈循环
- 自适应RAG
- 自RAG
- 知识图谱
- 分层索引
- HyDE
- 融合
- 多模型
- Crag
- 结论
评测结果
Adaptive RAG以0.86的最高分,超过分层索引(0.84)、Fusion(0.83)和CRAG(0.824)成为本轮测评冠军:
通过智能分类查询并为每种问题类型选择最合适的检索策略,Adaptive RAG表现出比其他方法更好的性能。能够动态切换事实性、分析性、观点性和上下文策略,使其能够以显著的准确性处理多样化的信息需求。