Python中__new__, __init__, __del__内容详解

部署运行你感兴趣的模型镜像

概览

  • __new__(cls, *args, **kwargs) —— 创建新实例(分配内存并返回实例对象)。通常返回 super().__new__(cls) 的结果;对不可变类型(int/str/tuple)或需要控制实例创建时的场景经常重写它。
  • __init__(self, *args, **kwargs) —— 对新创建的实例做初始化(设置属性等),但不负责分配内存。只有当 __new__ 返回的是 cls(或其子类)的实例时,__init__ 才会被调用。
  • __del__(self) —— 在对象即将被销毁时调用(终结器 / finalizer)。调用时机不确定(特别是在不同 Python 实现或解释器关闭时),且有许多陷阱——通常推荐使用上下文管理或 weakref.finalize 取代它。

对象生命周期

  1. Python 调用类(C())时,实际执行 type.__call__(即类对象的 __call__)。

  2. type.__call__ 内部先调用 cls.__new__(cls, *args, **kwargs) 获得实例 obj

  3. 如果 objcls 的实例(isinstance(obj, cls) 为真),则调用 cls.__init__(obj, *args, **kwargs) 初始化该实例。

    • 如果 __new__ 返回不是 cls 的实例,则不会调用 __init__
  4. 当对象变为不可达,垃圾回收触发析构时,若满足条件(参考计数为 0 或 GC 回收)则调用 obj.__del__()(但并不保证在所有实现或 shutdown 阶段一定调用)。


__new__ 详解(创建阶段——控制实例的产生)

作用与签名

def __new__(cls, *args, **kwargs) -> object:
    ...
  • 是一个类方法(第一个参数是类 cls),用于创建并返回一个新对象(通常是 cls 的实例)。
  • 必须返回一个对象;若返回 None 或非对象类型会导致错误。
  • 常见的返回是 super().__new__(cls)(内建 object.__new__)或某个已有实例(用于单例、对象池等)。

什么时候重写 __new__

  • 你要创建不可变类型的子类(int/str/tuple):因为 __init__ 在对象创建后运行,无法改变对象本身的内在状态,必须在 __new__ 中设置值。
  • 实现 单例/实例复用/对象池__new__ 可以返回已有实例,避免重复创建。
  • 需要在创建时干预(例如从缓存中取对象、记录分配、或给底层 C 扩展传参)。

重要语义与边界

  • __new__ 返回 cls 的实例,则 Python 会接着调用 __init__(对返回的那个实例)。

  • __new__ 返回非 cls 的对象(比如返回一个 int、或另一个类的实例),则 不会 调用 __init__。这可用于工厂样式:A() 可能返回 B() 的实例。

  • 返回子类实例(isinstance(obj, cls) 为真)→ __init__ 仍会被调用,但调用的是返回对象类型的 __init__(查找在对象类型上)。

  • 典型写法(最简单安全写法):

    def __new__(cls, *args, **kwargs):
        self = super().__new__(cls)
        # 可能做些原始字段分配/检查
        return self
    

示例:打印创建与初始化顺序

class A:
    def __new__(cls, *args, **kwargs):
        print("__new__", cls, args, kwargs)
        return super().__new__(cls)

    def __init__(self, x):
        print("__init__", self, x)

    def __repr__(self):
        return f"<A id={id(self)}>"

a = A(10)
# 输出:
# __new__ <class '__main__.A'> (10,) {}
# __init__ <A id=...> 10

示例:不可变类型(以 str 为例)

class UpperStr(str):
    def __new__(cls, content):
        # 在 __new__ 中转成大写 —— 因为 str 是不可变的
        return str.__new__(cls, content.upper())

    def __init__(self, content):
        # __init__ 仍会被调用,但不能再改变字符串的值
        print("init called with", content)

s = UpperStr("hello")
print(s)  # HELLO

示例:单例(并示范 init 重入问题)

class Singleton:
    _inst = None
    def __new__(cls, *args, **kwargs):
        if cls._inst is None:
            cls._inst = super().__new__(cls)
        return cls._inst

    def __init__(self, value=None):
        # __init__ 会在每次调用时被调用(因为返回的对象是 cls 的实例)
        # 常见做法是用已初始化标志避免重复初始化:
        if hasattr(self, "_initialized"):
            return
        self.value = value
        self._initialized = True

a = Singleton(1)
b = Singleton(2)
assert a is b
assert a.value == 1  # 由于 _initialized,第二次 __init__ 不会覆盖

返回不同类型 -> 跳过 __init__

class Factory:
    def __new__(cls, flag):
        if flag:
            return super().__new__(cls)
        else:
            return 123  # 返回非实例 -> __init__ 不会被调用

f = Factory(False)  # 返回 123
# 注意:这里 f 不是 Factory 的实例

__init__ 详解(初始化阶段——配置实例状态)

作用与签名

def __init__(self, *args, **kwargs) -> None:
    ...
  • 不是构造器(不负责分配内存),是初始化器:在 __new__ 返回合格实例后被调用。
  • 可以设置属性、校验参数、打开资源(不推荐在此直接打开关键系统资源以避免析构问题,但可以根据需要做一些初始化)。
  • __init__ 抛异常,则实例创建被视为失败(异常传播)——此时对象可能会被销毁。

注意点

  • 在多重继承/协作式继承中,应使用 super().__init__(),以确保所有基类都能以 cooperative 的方式初始化。
  • __init__ 可以被多次调用(比如单例返回同一实例、但 __init__ 每次都被调用),因此如果不想重初始化,需做已初始化标志判断。
  • __init__ 的返回值必须是 None(返回其他值是无意义的,会被忽略,但不应该返回非 None)。

示例:协作式初始化(多继承)

class Base:
    def __init__(self):
        print("Base init")

class Mixin:
    def __init__(self):
        print("Mixin init")
        super().__init__()

class Child(Mixin, Base):
    def __init__(self):
        print("Child init")
        super().__init__()

Child()
# 输出(由 MRO 决定):
# Child init
# Mixin init
# Base init

__del__ 详解(析构 / finalizer)

作用与签名

def __del__(self):
    ...
  • 在对象即将被销毁时 Python 会尝试调用它(终结器),常用于释放外部资源(文件句柄、套接字、临时文件等),但其调用时机与保证性都有限
  • 在不同 Python 实现(CPython / PyPy / Jython)与不同情形(引用计数为 0 / GC 清理 / 解释器退出)下,__del__ 的调用行为不同,所以不应依赖它做关键资源释放

关键陷阱 & 注意事项

  1. 不确定性:在 PyPy、JVM(Jython)等实现中,GC 是非确定性的,__del__ 可能延迟很久甚至不会及时执行。
  2. 解释器退出时:在程序退出阶段(interpreter shutdown),模块全局变量可能已被置为 None__del__ 中访问这些全局会失败或抛异常;因此在 __del__ 中避免引用模块级资源,或在 __del__ 中进行存在性检查。
  3. 循环引用:如果对象参与引用循环,并且实现了 __del__,CPython 的垃圾回收器会将这种循环中的对象放入 gc.garbage 而不会自动调用 __del__,因为确定执行顺序会不安全。
  4. 异常处理__del__ 中的异常不会传播(会被打印到 sys.stderr),但这也可能掩盖问题。
  5. 复活对象(Resurrection):在 __del__ 中把 self 再次绑定到全局变量或其他地方可以“复活对象”,这种行为非常危险且难以预测(不推荐)。
  6. 若想确保资源释放,优先用 with / context manager 或 weakref.finalize

示例:__del__ 与循环的危险

import gc

class Node:
    def __init__(self):
        self.ref = self  # 自引用,形成循环
    def __del__(self):
        print("Node.__del__ called")

n = Node()
del n
# 对于通常 CPython,可能不会立即打印 __del__,
# gc 会检测循环,但因为有 __del__,不会自动回收该循环。
gc.collect()
print("garbage:", gc.garbage)
  • 上面带 __del__ 的循环对象往往不会被安全销毁而是放到 gc.garbage,你需要手动断开循环或移除 __del__

推荐替代:context managerweakref.finalize

使用 with(首选)

class Resource:
    def __enter__(self):
        self.f = open("tmp.txt","w")
        return self.f
    def __exit__(self, exc_type, exc, tb):
        self.f.close()

with Resource() as f:
    f.write("hello")
# 确保及时关闭

使用 weakref.finalize(适合对象超出作用域时回收资源)

import weakref, tempfile

class Resource:
    def __init__(self, name):
        self._f = open(name, "w")
        # 注册 finalizer:当 Resource 实例被回收时,确保文件被关闭。
        self._finalizer = weakref.finalize(self, Resource._cleanup, self._f)

    @staticmethod
    def _cleanup(f):
        try:
            f.close()
        except Exception:
            pass

r = Resource("t.txt")
del r
# 当 r 被回收时 _cleanup 会被调用,且不依赖 __del__ 的复杂规则

weakref.finalize 的好处:不会因对象处于循环引用中而丢失回调,行为更可靠;也能避免 del 在解释器关闭阶段的问题。

__del__ 在解释器关闭阶段的典型问题

  • 在解释器退出时,模块级名可能已被设置为 None,若 __del__ 依赖模块级变量(例如 logger),则可能抛异常或不能工作。若确实需要在 __del__ 中使用模块对象,先检查是否为 None

与 pickling / 拷贝 等的交互(补充重要点)

  • Pickle 与 __new__:当对象被 unpickle 时,__new__ 会被用来创建实例(通过 __getnewargs__ / __getnewargs_ex__ 可以给 __new__ 提供参数),之后再通过 __setstate__ 或直接设置 __dict__ 恢复状态。通常 __init__ 不会被再次调用(取决于 pickling 协议)。
  • 复制copy.copy 会调用对象的 __reduce__/__reduce_ex__ 或利用 __getstate__/__setstate____init__ 不一定被调用。要在复制时控制行为,可以定义 __copy__ / __deepcopy__

常见用例与示范代码集合

1. 打印生命周期演示

class Demo:
    def __new__(cls, *a, **k):
        print("__new__", cls, a, k)
        return super().__new__(cls)
    def __init__(self, x):
        print("__init__", self, x)
    def __del__(self):
        print("__del__", self)

d = Demo(5)
del d

2. 不可变类型(tuple)的定制

class Point(tuple):
    def __new__(cls, x, y):
        return tuple.__new__(cls, (x, y))
    def x(self): return self[0]
    def y(self): return self[1]

3. 对象池(示例:复用实例)

class Pooled:
    _pool = []
    def __new__(cls, *args, **kwargs):
        if cls._pool:
            obj = cls._pool.pop()
            print("reuse", obj)
            return obj
        return super().__new__(cls)

    def __init__(self, value):
        self.value = value

    def release(self):
        # 手动返回池中
        self._pool.append(self)

p1 = Pooled(1)
p1.release()
p2 = Pooled(2)  # 可能 reuse p1; __init__ 被再次调用 -> 注意需处理重初始化

4. 单例(推荐简单可靠的模块单例,而非复杂 new 单例)

# module-level singletons are simplest:
# my_singleton.py
class Service:
    pass
service = Service()

# import my_singleton; my_singleton.service 即单例

常见问题答疑(FAQ)

Q1:如果 __new__ 返回已有实例,那么 __init__ 会被调用吗?
A:如果返回的对象是 isinstance(obj, cls) 为真(即返回对象属于 cls 或其子类),Python 会调用 __init__(对该对象);因此在单例/池化实现中要注意 __init__ 会重复运行,通常通过检查 _initialized 标志或在 __new__ 中避免再次初始化来处理。

Q2:__del__ 能保证在程序退出时调用吗?
A:不能保证——解释器关闭时对象引用可能被置为 None,不同实现也差异很大。不要把关键释放逻辑放在 __del__ 中;使用 withweakref.finalize

Q3:如何避免 __del__ 与循环引用的冲突?
A:避免在对象中写 __del__;改用 weakref.finalize。或者确保在清理前手动断开循环引用(例如把大结构的引用置为 None)。

Q4:__new____init____del__ 的相对性能影响?
A:__new____init__ 的额外开销通常微小;但在高性能场景(比如每帧创建大量对象)下,避免频繁创建/销毁对象(可使用对象池、复用或 C 扩展)更有意义。__del__ 影响 GC(与循环引用交互),不适合用于大量对象。


实践总结

  • 优先使用 __init__ 来初始化实例状态;仅在需要控制实例创建(不可变类型、缓存/池、单例)时覆盖 __new__
  • 在多继承中统一使用 super(),并让每个类的 __init__/__new__ 支持 cooperative 调用。
  • 避免在 __init__/__new__ 中执行过多耗时任务(比如 I/O);那类工作宜在显式方法中做或移到后台线程。
  • 不要依赖 __del__ 释放关键系统资源。对于显式生命周期使用 with(上下文管理器)或 weakref.finalize 注册清理。
  • 如果要实现单例或对象缓存,显式处理重复初始化(检查 _initialized 标志或用工厂函数/模块单例替代)。
  • 对于不可变类型(str/tuple/int)的子类,__new__ 中设置值,不要期待 __init__ 可以修改对象内容。

示例

示例 1:__new____init__ 执行顺序

# file: test_new_init.py
import unittest

class Demo:
    def __new__(cls, *args, **kwargs):
        print(f"__new__ called, cls={cls}, args={args}, kwargs={kwargs}")
        # 必须调用父类 __new__ 才能真正创建对象
        instance = super().__new__(cls)
        return instance

    def __init__(self, value):
        print(f"__init__ called, self={self}, value={value}")
        self.value = value


class TestNewInit(unittest.TestCase):
    def test_new_and_init(self):
        d = Demo(42)
        self.assertEqual(d.value, 42)


if __name__ == "__main__":
    unittest.main()

运行结果(简化):

__new__ called, cls=<class '__main__.Demo'>, args=(42,), kwargs={}
__init__ called, self=<__main__.Demo object>, value=42
.
----------------------------------------------------------------------
Ran 1 test in 0.000s

OK

可以看到 先调用 __new__,再调用 __init__


示例 2:自定义单例模式(依赖 __new__

# file: test_singleton.py
import unittest

class Singleton:
    _instance = None

    def __new__(cls, *args, **kwargs):
        if cls._instance is None:
            print("Creating new instance")
            cls._instance = super().__new__(cls)
        else:
            print("Reusing existing instance")
        return cls._instance

    def __init__(self, value):
        # 注意:即使是重复获取单例,也会调用 __init__!
        print(f"__init__ called with value={value}")
        self.value = value


class TestSingleton(unittest.TestCase):
    def test_singleton_identity(self):
        a = Singleton(1)
        b = Singleton(2)
        self.assertIs(a, b)
        # 因为 __init__ 每次都执行,最后 value=2
        self.assertEqual(a.value, 2)


if __name__ == "__main__":
    unittest.main()

演示 __new__ 控制实例唯一性,而 __init__ 每次都会执行。


示例 3:__del__ 与垃圾回收

# file: test_del_gc.py
import unittest
import gc
import weakref

class Tracked:
    def __init__(self, name):
        self.name = name
        print(f"[__init__] Created {self.name}")

    def __del__(self):
        print(f"[__del__] Destroying {self.name}")


class TestDelGC(unittest.TestCase):
    def test_del_behavior(self):
        obj = Tracked("obj1")
        ref = weakref.ref(obj)

        self.assertIsNotNone(ref())
        del obj  # 删除变量名,但对象可能仍在

        # 强制触发垃圾回收
        gc.collect()

        self.assertIsNone(ref())


if __name__ == "__main__":
    unittest.main()

运行时,你会看到:

[__init__] Created obj1
[__del__] Destroying obj1
.
----------------------------------------------------------------------
Ran 1 test in 0.001s

OK

__del__ 在对象被销毁时调用,但调用时机 不确定,只有在引用计数归零且 GC 回收时才触发。


示例 4:循环引用 + gc

# file: test_cycle_gc.py
import unittest
import gc

class Node:
    def __init__(self, name):
        self.name = name
        self.ref = None
        print(f"Node {self.name} created")

    def __del__(self):
        print(f"Node {self.name} destroyed")

class TestCycleGC(unittest.TestCase):
    def test_cycle(self):
        a = Node("A")
        b = Node("B")
        a.ref = b
        b.ref = a  # 构成循环引用

        del a, b
        print("Deleted references, running gc.collect() ...")
        unreachable = gc.collect()
        print(f"GC collected {unreachable} objects")


if __name__ == "__main__":
    unittest.main()

运行结果(可能因环境不同而不同):

Node A created
Node B created
Deleted references, running gc.collect() ...
Node A destroyed
Node B destroyed
GC collected 2 objects
.
----------------------------------------------------------------------
Ran 1 test in 0.002s

OK

gc.collect() 能检测并回收循环引用,即使其中对象有 __del__ 方法。


总结:

  1. __new__ 决定对象创建,优先级高于 __init__
  2. __init__ 初始化对象属性,即使单例也会多次调用。
  3. __del__ 在对象销毁时调用,但调用时机不确定(取决于 GC)。
  4. gc.collect() 可以演示循环引用下的销毁行为。

您可能感兴趣的与本文相关的镜像

Python3.9

Python3.9

Conda
Python

Python 是一种高级、解释型、通用的编程语言,以其简洁易读的语法而闻名,适用于广泛的应用,包括Web开发、数据分析、人工智能和自动化脚本

<think>我们正在讨论Python中所有双下划线开头和结尾的属性和方法。这类名称在Python中被称为“魔术方法”(Magic Methods)或“特殊方法”(Special Methods)。它们由Python语言定义,用于实现对象的特定行为。根据引用[1][2][4]的内容,这些方法在特定的操作中被Python解释器自动调用。 关键点: 1. 双下划线开头和结尾(如`__init__`, `__str__`)的方法是Python内置的特殊方法,用于重载运算符或定义对象的特定行为。 2. 这些方法不是普通的函数,必须定义在类中。 3. 双下划线开头和结尾的变量(属性)也是特殊用途的,但相对较少,通常用于表示一些特殊含义(如模块的`__name__`,类的`__doc__`等)。 我们将从以下几个方面进行说明: 一、常见的特殊方法(魔术方法) 二、特殊属性 三、使用场景和注意事项 一、常见的特殊方法(魔术方法) 根据引用[1]和[4],以下是一些常见的魔术方法: 1. 对象创建和初始化: - `__new__(cls, ...)`: 创建实例时调用的静态方法(第一个参数是类),返回实例对象。 - `__init__(self, ...)`: 初始化实例,在`__new__`之后调用。 2. 字符串表示: - `__str__(self)`: 定义对象的“非正式”字符串表示,用于`str(obj)`和`print(obj)`。 - `__repr__(self)`: 定义对象的“正式”字符串表示,通常用于交互式解释器和调试,应尽可能返回一个可以用于重建对象的字符串表达式。 3. 运算符重载: - 算术运算符:`__add__(self, other)`, `__sub__(self, other)`, `__mul__(self, other)`, `__truediv__(self, other)`, `__mod__(self, other)`等。 - 比较运算符:`__eq__(self, other)`, `__ne__(self, other)`, `__lt__(self, other)`, `__le__(self, other)`, `__gt__(self, other)`, `__ge__(self, other)`。 - 其他运算符:`__invert__(self)`(按位取反`~`),`__neg__(self)`(负号`-`),`__pos__(self)`(正号`+`)等。 4. 容器和序列操作: - `__len__(self)`: 返回容器长度,用于`len(obj)`。 - `__getitem__(self, key)`: 获取索引对应的元素,用于`obj[key]`。 - `__setitem__(self, key, value)`: 设置索引对应的元素,用于`obj[key]=value`。 - `__delitem__(self, key)`: 删除索引对应的元素,用于`del obj[key]`。 - `__contains__(self, item)`: 定义`in`操作符的行为。 5. 迭代器协议: - `__iter__(self)`: 返回一个迭代器对象,通常用于`for`循环。 - `__next__(self)`: 迭代器对象需要实现的方法,返回下一个元素。 6. 上下文管理(`with`语句): - `__enter__(self)`: 进入上下文时调用,返回的对象赋值给`as`后面的变量。 - `__exit__(self, exc_type, exc_value, traceback)`: 离开上下文时调用,用于处理异常和清理资源。 7. 属性访问控制: - `__getattr__(self, name)`: 当访问不存在的属性时调用。 - `__setattr__(self, name, value)`: 设置属性时调用(包括直接赋值和`setattr`函数)。 - `__delattr__(self, name)`: 删除属性时调用。 - `__getattribute__(self, name)`: 访问任何属性时都会调用(包括存在的和不存在的)。 8. 描述符(Descriptor)协议(用于实现属性、方法绑定等高级特性): - `__get__(self, instance, owner)`: 当描述符被读取时调用。 - `__set__(self, instance, value)`: 当描述符被设置时调用。 - `__delete__(self, instance)`: 当描述符被删除时调用。 二、特殊属性 除了方法,Python也有一些双下划线开头和结尾的特殊属性: 1. `__name__`:对象的名字,如模块、类、函数的名字。 2. `__doc__`:对象的文档字符串(docstring)。 3. `__module__`:定义对象的模块名。 4. `__class__`:对象的类。 5. `__dict__`:对象属性的字典(参见之前的问题)。 6. `__slots__`:限制实例可以拥有的属性(用于内存优化)。 7. `__annotations__`:包含类型注解的字典(Python 3.6+)。 8. `__bases__`:类的基类元组。 三、使用场景和注意事项 1. 特殊方法通常由Python解释器隐式调用,不建议直接调用(除非你知道自己在做什么)。 2. 特殊属性由Python内部设置,通常只读(除了`__dict__`等少数可写)。 3. 自定义类中实现特殊方法可以实现运算符重载、对象行为定制等高级功能。 4. 引用[3]指出:双下划线开头并结尾的变量(如`__var__`)会继承给子类,类似于普通属性。而双下划线开头但没有结尾(如`__var`)的变量是私有变量,会触发名称修饰(Name Mangling),即变成`_类名__var`的形式,这样可以避免子类中的命名冲突[^3][^4][^5]。 5. 模块级别的特殊属性:模块也有`__name__`、`__file__`、`__package__`等属性。 示例代码: 定义一个类,展示几个特殊方法的使用: ```python class Vector: def __init__(self, x, y): self.x = x self.y = y def __str__(self): return f'Vector({self.x}, {self.y})' def __add__(self, other): return Vector(self.x + other.x, self.y + other.y) def __eq__(self, other): return self.x == other.x and self.y == other.y # 使用 v1 = Vector(2, 4) v2 = Vector(3, 1) print(v1 + v2) # 调用__add__,然后调用__str__:Vector(5, 5) print(v1 == v2) # 调用__eq__:False ``` 关于特殊属性,我们可以查看上面Vector类的属性: ```python print(Vector.__name__) # 输出 'Vector' print(Vector.__module__) # 输出 '__main__'(如果是直接运行) ``` 注意:在模块级别,我们也可以定义一些特殊属性(比如`__doc__`用于模块文档),但通常不建议在模块级别定义太多自己的双下划线属性,以免与Python内置的特殊属性冲突。 总结: 双下划线开头和结尾的名称是Python中用于特殊目的的标识符,它们赋予了类特殊的能力,使得自定义类可以像内置类型一样行为。同时,Python也提供了一些特殊属性用于获取对象的元信息。 §§相关问题§§ 1. 名称修饰(Name Mangling)的具体规则是什么?私有变量如何访问? 2. 描述符协议(Descriptor Protocol)在实际开发中有哪些应用场景? 3. 除了常见的魔术方法,Python中还有哪些较少用但功能强大的特殊方法? </think>### Python 双下划线开头和结尾的属性方法详解(`__xxx__`) 在 Python 中,以双下划线开头和结尾的标识符(如 `__init__`, `__str__`)被称为**特殊方法**或**魔术方法**(Magic Methods)。它们由 Python 语言定义,用于实现对象的特定行为,在特定操作时会被解释器自动调用[^1][^4]。以下是完整分类和说明: #### 一、核心功能分类 1. **对象生命周期方法** ```python __new__(cls) # 创建实例时调用(构造函数之前) __init__(self) # 对象初始化(最常用)[^1] __del__(self) # 对象销毁时调用(析构函数) ``` 2. **字符串表示方法** ```python __str__(self) # 定义 print(obj) 的输出[^1] __repr__(self) # 定义解释器直接显示的对象表示 __format__(self) # 定义 format() 函数的格式化行为 ``` 3. **运算符重载方法** ```python __add__(self, other) # 实现 + 运算 (a + b) __sub__(self, other) # 实现 - 运算 (a - b)[^1] __mul__(self, other) # 实现 * 运算 __eq__(self, other) # 实现 == 比较 __lt__(self, other) # 实现 < 比较 ``` 4. **容器类型方法** ```python __len__(self) # 定义 len(obj) 的行为 __getitem__(self, key) # 定义 obj[key] 的访问 __setitem__(self, key, value) # 定义 obj[key]=value __contains__(self, item) # 定义 in 运算符行为 ``` 5. **调用与上下文管理** ```python __call__(self) # 使对象可调用(如 obj()) __enter__(self) # with 语句进入时调用 __exit__(self) # with 语句退出时调用 ``` #### 二、特殊属性(只读) | 属性 | 说明 | |------|------| | `__name__` | 对象名称(函数/类/模块)[^4] | | `__doc__` | 对象的文档字符串 | | `__module__` | 定义对象的模块名 | | `__class__` | 对象所属的类 | | `__dict__` | 对象属性的字典[^4] | | `__slots__` | 限定类允许的属性 | | `__annotations__` | 类型注解字典 | #### 三、关键特性 1. **自动触发机制** 特殊方法由 Python 解释器隐式调用: ```python class Point: def __init__(self, x, y): self.x = x self.y = y def __add__(self, other): return Point(self.x + other.x, self.y + other.y) p1 = Point(1, 2) # 自动调用 __init__ p2 = Point(3, 4) p3 = p1 + p2 # 自动触发 __add__ ``` 2. **命名规范约束** - `__xxx__` 是 Python 保留命名空间[^4] - 自定义属性**禁止**使用此格式(可能导致与未来 Python 特性冲突) 3. **与私有变量的区别** | 类型 | 示例 | 可继承性 | 访问性 | |------|------|----------|--------| | 特殊方法 | `__init__` | 可继承 | 公有 | | 私有变量 | `__name` | 不可继承[^3] | 需通过 `_ClassName__name` 访问[^5] | #### 四、使用示例 ```python class Vector: def __init__(self, x, y): self.x = x self.y = y def __str__(self): return f"Vector({self.x}, {self.y})" # 自定义输出格式 def __add__(self, other): return Vector(self.x + other.x, self.y + other.y) # 向量加法 v1 = Vector(2, 3) v2 = Vector(4, 5) print(v1) # 输出: Vector(2, 3)(调用 __str__) v3 = v1 + v2 # 输出: Vector(6, 8)(调用 __add__) ``` #### 五、注意事项 1. 避免在自定义属性中使用 `__xxx__` 格式 2. 直接调用魔术方法可能破坏封装性(如 `obj.__init__()`) 3. 内置类型(如 `list`, `dict`)已实现大量特殊方法 4. 通过 `dir(obj)` 可查看对象的所有特殊方法 > 特殊方法是 Python **面向对象编程的基石**,它们使得自定义对象能像内置类型一样支持运算符、迭代等核心操作[^1][^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云SLAM

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值