Pytorch学习-task7:Pytorch池化层和归一化层

本文详细介绍了PyTorch中MaxPool和AvgPool两种池化操作,包括参数解释、尺寸计算和实例演示。同时提到了MaxUnpool作为MaxPool的逆运算,并简单实现了mean_pooling和max_pooling的函数。最后,讨论了归一化层在神经网络中的作用。

参考链接1:
参考链接2:
参考链接3:

torch.nn中提供的Pooling Layers

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

池化层

1. MaxPool 最大池化操作

torch.nn.MaxPool1d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)
torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)
torch.nn.MaxPool3d(kernel_size, stride=None, padding=0, dilation
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值