IntelliLight: a Reinforcement Learning Approach for Intelligent Traffic Light Control 论文阅读

概述

1、本文贡献

1)Experiments with real traffic data.

使用了真实的数据集。

2)Interpretations of the policy.

对选择的政策进行了解释。

3)A phase-gated model learning.

以往的研究都是将phase作为一个特征,还包含有其他的特征如不同车道的车辆数,车辆位置等等。很有可能phase这一特征并没有产生什么作用。例如下图这种情况,两个场景除了交通灯不一致之外,其余完全相同,很有可能模型对这两种情况作出了相同的决策。但实际情况是A希望保持现在的phase,但B希望改变现在的phase。 因此,提出了一种new phase-sensitive【新的相位敏感机制--自译】,包含了记忆宫殿和相位门,两种改进措施。

在这里插入图片描述

2、问题定义

1)State

(1)Traffic light phase
绿灯阶段包含后续的黄灯阶段(3s),且只能按照指定的顺序变化(1->2->1->2->…)
- Green-WE:WE方向为绿灯,NS方向为红灯
- Red-WE:WE方向为红灯,NS方向为绿灯
(2)Traffic condition
针对每一个车道的,如果路口有多条车道,那么就有多个值
- L :车道i上的队列长度 Li
- V :车道i上的车辆数量 Vi
- W :车道i上的平均等待时间 Wi
- M :车辆位置的图像表示

2)Action

a = 0:改变相位
a = 1:保持相位

3)Reward

多种因素的加权和
计算公式及系数:
在这里插入图片描述
在这里插入图片描述

解释:
(1)车道排队长度L之和
其中L计算为给定车道上最后一个时间步长的停车车辆总数。低于0.1米/秒的速度被认为是停止。
(2)车道平均等待时间之和W
其中W定义为车辆自上次速度超过0.1m/s以来,以低于0.1m/s的速度行驶的时间(分钟)。基本上,车辆每次行驶的等待时间都重置为0。
(3)信号灯切换次数C

(4)车辆延迟之和D
(5)在动作a后的时间间隔内通过交叉口的车辆总数N
(6)在行动a后的时间间隔内通过交叉口的车辆行驶时间总和,定义为车辆在接近车道上花费的总时间(以分钟为单位) T

3、网络结构

在这里插入图片描述

(1)off-line阶段

使用log来训练系统

(2)on-line阶段

每个时间t系统会得到一些state(例如我们想每5s确定一下是否要改变信号灯的状态), 接着模型根据这些state给出action, 并得到reward. 我们将这些存入memory. 在一些步骤后, 更新模型.

4、phase-sensitive

(1)phase gate 相位门

针对不同的phase,选择不同的模型,突出了特征phase的重要性。
如上图所示,当phase=0时,左侧的模型被激活;
当phase=1时,右侧的模型被激活。

(2)Memory Palace 记忆宫殿

DQN使用经验回放机制,解决样本不是独立同分布和具有强相关性的两个问题。
但对于数据不平衡,抽样的结果也可能是不平衡的。因此,作者使用记忆宫殿方式,将不同的phase-action组合的样本存储在不同的memory库中,然后从不同的宫殿中抽取相同数量的样本,如下图所示。
在这里插入图片描述

5、实验结果说明

1)仿真数据

2)真实数据

要复现论文[JSAC 2018] Energy - Efficient UAV Control for Effective and Fair Communication Coverage: A Deep Reinforcement Learning Approach,可从以下几个方面着手。 ### 理解论文内容 深入研读论文,明确其研究的核心问题,即通过深度强化学习方法实现高效节能的无人机控制以达成有效且公平的通信覆盖。掌握论文中提出的模型架构、算法流程以及相关理论依据。 ### 数据准备 依据论文描述,准备合适的数据集。可能需要模拟不同的场景,如不同的地理环境、通信需求分布等,以生成用于训练和测试的数据。数据应包含无人机的初始状态、环境信息、通信覆盖目标等。 ### 算法实现 使用合适的编程语言(如Python)和深度学习框架(如TensorFlow、PyTorch)来实现论文中的深度强化学习算法。以下是一个简单的基于PyTorch的深度强化学习代码示例框架: ```python import torch import torch.nn as nn import torch.optim as optim # 定义神经网络模型 class DRLModel(nn.Module): def __init__(self, input_size, output_size): super(DRLModel, self).__init__() self.fc1 = nn.Linear(input_size, 64) self.fc2 = nn.Linear(64, output_size) def forward(self, x): x = torch.relu(self.fc1(x)) x = self.fc2(x) return x # 初始化模型 input_size = 10 # 假设输入维度为10 output_size = 5 # 假设输出维度为5 model = DRLModel(input_size, output_size) # 定义优化器和损失函数 optimizer = optim.Adam(model.parameters(), lr=0.001) criterion = nn.MSELoss() # 模拟训练过程 for epoch in range(100): # 这里需要替换为实际的数据 input_data = torch.randn(32, input_size) target_output = torch.randn(32, output_size) optimizer.zero_grad() output = model(input_data) loss = criterion(output, target_output) loss.backward() optimizer.step() if epoch % 10 == 0: print(f'Epoch {epoch}, Loss: {loss.item()}') ``` ### 实验验证 按照论文中的实验设置,对实现的算法进行测试和验证。对比复现结果与论文中的实验结果,分析差异并进行调整优化。 ### 结果分析 对复现结果进行深入分析,评估算法在节能、通信覆盖效果和公平性等方面的性能。如果结果与论文不一致,需要仔细检查代码实现、数据处理等环节,找出问题并解决。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值