随机森林random forest

大概意思是,从训练集中随机抽样n个,然后将这n个组建成树,树按照特征值来划分左右树,寻找最优分类的左右树,按照Gini指数的计算问题,假如将原始数据集D切割两部分,分别为D1和D2,则Gini(D|切割)=(|D1|/|D|)*Gini(D1)+(|D2|/|D|)*Gini(D2)。gini越小,数据分类越准确。

这算法没什么好讲的,比较简单。

from __future__ import print_function
from random import seed,randrange,random

#导入csv文件
def loadDataSet(filename):
    dataset=[]
    with open(filename,'r') as fr:
        for line in fr.readlines():
            if not line:
                continue
            lineArr=[]
            for feature in line.split(','):
                #strip()返回移除字符串头尾指定的字符生成的新字符串
                str_f=feature.strip()
                
                # isdigit 如果是浮点型数值,就是false,所以换成isalpha()函数
                # if str_f.isdigit():     # 判断是否是数字
                if str_f.isalpha():
                    # 添加分类标签
                    lineArr.append(str_f)
                else:
                    # 将数据集的第column列换成float形式
                    lineArr.append(float(str_f))
            dataset.append(lineArr)
    return dataset

def cross_validation_split(dataset,n_folds):
    '''
    cross_validation_split(将数据集进行抽重抽样 n_folds 份,数据可以重复抽取,每一次list的元素是无重复的)
    Args:
        dataset     原始数据集
        n_folds     数据集dataset分成n_flods份
    Returns:
        dataset_split    list集合,存放的是: 将数据集进行抽重抽样 n_folds 份,数据可以重复重复抽取,每一次list的元素是无重复的
    
    '''
    dataset_split=list()
    dataset_copy=list(dataset) # 复制一份dataset,防止dataset的内容改变
    fold_size=len(dataset)/n_folds
    for i in range(n_folds):
        fold =list()                 # 每次循环 fold 清零,防止重复导入 dataset_split
        while len(fold)<fold_size:  # 这里不能用 if,if 只是在第一次判断时起作用,while 执行循环,直到条件不成立
            # 有放回的随机采样,有一些样本被重复采样,从而在训练集中多次出现,有的则从未在训练集中出现,此则自助采样法。从而保证每棵决策树训练集的差异性            
            index=randrange(len(dataset_copy))
            # 将对应索引 index 的内容从 dataset_copy 中导出,并将该内容从 dataset_copy 中删除。
            # pop() 函数用于移除列表中的一个元素(默认最后一个元素),并且返回该元素的值。
            # fold.append(dataset_copy.pop(index))  # 无放回的方式
            fold.append(dataset_copy[index])  # 有放回的方式
        dataset_split.append(fold)
    # 由dataset分割出的n_folds个数据构成的列表,为了用于交叉验证
    return dataset_split

# Split a dataset based on an attribute and an attribute value # 根据特征和特征值分割数据集
def test_split(index,value,dataset):
    left,right=list(),list()
    for row in dataset:
        if row[index]<value:
            left.append(row)
        else:
            right.append(row)
    return left,right

'''
Gini指数的计算问题,假如将原始数据集D切割两部分,分别为D1和D2,则
Gini(D|切割)=(|D1|/|D|)*Gini(D1)+(|D2|/|D|)*Gini(D2)
学习地址:
    http://bbs.pinggu.org/thread-5986969-1-1.html
    http://www.cnblogs.com/pinard/p/6053344.html
而原文中 计算方式为:
   Gini(D|切割)=Gini(D1)+Gini(D2)

# Calculate the Gini index for a split dataset
def gini_index(groups,class_values):  #个人理解:计算代价,分类越准确,则gini越小
    gini=0.0
    for class_value in class_values:  # class_values=[0,1]
        for group in groups:
            size =len(group)
            if size==0:
               continue
            proportion=[row[-1] for row in group].count(class_value)/float(size)     #group最后一列组成一个list,形似[ func(x) for x in l1]
            gini +=(proportion*(1,0-proportion))  # 个人理解:计算代价,分类越准确,则gini越小
    return gini
            
'''

def gini_index(groups,class_values): # 个人理解: 计算代价:分类越准确,则gini越小
    gini=0.0
    D=len(groups[0])+len(groups[1])
    for class_value in class_values:   # class_values=[0,1]
        for group in groups:           # groups=(left,right)
            size=len(group)
            if size==0:
                continue
            proportion=[row[-1] for row in group].count(class_value)/float(size)
            gini+=float(size)/D*(proportion*(1.0-proportion))   # 个人理解:计算代价,分类越准确,则gini越小
    return gini

# 找出分割数据集的最优特征,得到最优的特征 index,特征值 row[index] ,以及分割完的数据groups(left,right)
def get_split(dataset,n_features):
    class_values=list(set(row[-1] for row in dataset)) # class_values=[0,1]
    b_index,b_value,b_score,b_groups=999,999,999,None
    features=list()
    while len(features)<n_features:
        index=randrange(len(dataset[0])-1) # 往 features添加 n_features个特征(n_feature 等于特征数的根号),特征索引从dataset中随机取
        if index not in features:
            features.append(index)
    for index in features:             # 在 n_features个特征(
        for row in dataset:
            groups=test_split(index,row[index],dataset)  # groups=(left,right),row[index] 遍历每一行 index索引下的特征值作为分类值value,找出最优的分类特征和特征值
            gini=gini_index(groups,class_values)
            # 左右两边的数量越一样,说明数据区分度不高,gini系数越大
            if gini<b_score:
                b_index,b_value,b_score,b_groups=index,row[index],gini,groups # 最后得到最优的分类特征b_index,分类结果b_groups,b_value 为分错的代价成本
    # print b_score
    return {'index':b_index,'value':b_value,'groups':b_groups}

# Create a terminal node value # 输出group中出现次数较多的标签
def to_terminal(group):
    outcomes=[row[-1] for row in group]   # max() 函数中,当key参数不为空时,就以key的函数对象为判断的标准
    return max(set(outcomes),key=outcomes.count) # 输出group 中出现次数较多的标签    max函数可以输入一个参数,也可以输入两个参数。如果是一个参数,这个参数必须是可迭代的,max会for i in … 遍历一遍这个迭代器函数会返回其最大值,也可以给出key参数,
#这样函数会把第一个参数的每个值依次放入key提供的比较大小的方法里(常常是一个函数)求出最大值.

# Create child splits for a node or make terminal  #创建子分割器,递归分类,直到分类结束
def split(node,max_depth,min_size,n_features,depth):     # max_depth=10,min_size=1,n_features=int(sqrt((len(dataset[0])-1)))
    left,right=node['groups']
    del(node['groups'])
    # check for a no split
    if not left or not right:
        node['left']=node['right']=to_terminal(left+right)
        return
    # check for max depth
    if depth>=max_depth:   # max_depth=10 表示递归10次,若分类还未结束,则选取数据中分类标签较多的作为结果,使分类提前结束,防止过拟合
        node['left'],node['right']=to_terminal(left),to_terminal(right)
        return
    # process left child
    if len(left)<=min_size:
        node['left']=to_terminal(left)
    else:
        node['left']=get_split(left,n_features) # node['left']是一个字典,形式为{'index':b_index,'value':b_value,'groups':b_groups},所以node是一个多层字典
        split(node['left'],max_depth,min_size,n_features,depth+1)
    #process rigjt child
    if len(right)<=min_size:
        node['right']=to_terminal(right)
    else:
        node['right']=get_split(right,n_features)
        split(node['right'],max_depth,min_size,n_features,depth+1)
        
#Build a decision tree
def build_tree(train,max_depth,min_size,n_features):
    '''
    build_tree(创建一个决策树)
    Args:
        train           训练数据集
        max_depth       决策树深度不能太深,不然容易导致过拟合
        min_size        叶子节点的大小
        n_features      选取的特征的个数
    Returns:
        root            返回决策树
    
    '''
    
    # 返回最优列和相关的信息
    root=get_split(train,n_features)
    
    # 对左右2边的数据 进行递归调用,由于最优特征使用过,所以在后面进行使用的时候,就没有意义了
    # 例如: 性别-男女,对男使用这一特征就没有任何意义了
    split(root,max_depth,min_size,n_features,1)
    return root

# make a prediction with a decision with a decision tree
def predict(node,row): # 预测模型分类结果
    if row[node['index']]<node['value']:
        if isinstance(node['left'],dict):# isinstance 是python中一个内建函数,是用来判断一个对象是否是一个已知的类型
            return predict(node['left'],row)
        else:
            return node['left']
    else:
        if isinstance(node['right'],dict):
            return predict(node['right'],row)
        else:
            return node['right']

# make a prediction with a list of bagged trees
def bagging_predict(trees,row):
    '''
    bagging_predict(bagging预测)
    
    Args:
        trees           决策树的集合
        row             测试数据集的每一行数据
    Returns:
        返回随机森林中,决策树结果出现次数做大的
    '''
    predictions=[predict(tree,row) for tree in trees]
    return max(set(predictions),key=predictions.count)

# Create a random subsample from the dataset with replacement
def subsample(dataset,ratio):   # 创建数据集的随机子样本
    '''
    random_forest(评估算法性能,返回模型得分)
    Args:
        dataset         训练数据集
        ratio           训练数据集的样本比例
    Returns:
        sample          随机抽样的训练样本
    '''
    sample=list()
    # 训练样本的按比例抽样
    # round() 方法返回浮点数x的四舍五入值
    n_sample=round(len(dataset)*ratio)
    while len(sample)<n_sample:
        # 有放回的随机采样,有一些样本被重复采样,从而在训练集中多次出现,有的则从未在训练集中出现,此则自助采样法。从而保证每颗决策树训练集的差异性
        index=randrange(len(dataset))
        sample.append(dataset[index])
    return sample

# Random_forest Algorithm
def randon_forest(train,test,max_depth,min_size,sample_size,n_trees,n_features):
    '''
    random_forest(评估算法性能,返回模型得分)
    
    Args:
        train           训练数据集
        test            测试数据集
        max_depth       决策树深度不能太深,不然容易导致过拟合
        min_size        叶子节点的大小
        sample_size     训练数据集的样本比例
        n_trees         决策树的个数
        n_features      选取的特征的个数
    Returns:
        predictions     每一行的预测结果,bagging 预测最后的分类结果
    '''
    trees=list()
    # n_trees 表示决策树的数量
    for i in range(n_trees):
        #随机抽样的训练样本,随机采样保证了每颗决策树训练集的差异性
        sample=subsample(train,sample_size)
        #创建一个决策树
        tree=build_tree(sample,max_depth,min_size,n_features)
        trees.append(tree)
    
    #每一行的预测结果,bagging 预测最后的分类结果
    predictions=[bagging_predict(trees,row) for row in test]
    return predictions
# Calculate accuracy percentage
def accuracy_metric(actual,predicted):  # 导入实际值和预测值,计算精确度
    correct=0
    for i in range(len(actual)):
        if actual[i]==predicted[i]:
            correct+=1
    return correct/float(len(actual))*100.0

#评估算法性能,返回模型得分
def evalute_algorithm(dataset,algorithm,n_folds,*args):
    '''
    evalute_algorithm(评估算法性能,返回模型得分)
    Args:
        dataset     原始数据集
        algorithm   使用的算法
        n_folds     数据的份数
        *args       其他的参数
    Returns:
        scores      模型得分
    
    '''
    #将数据集进行抽重抽样 n_folds 份,数据可以重复抽取,每一次list的元素是无重复的
    folds=cross_validation_split(dataset,n_folds)
    scores=list()
    # 每次循环从folds中取出一个fold作为测试集,其余作为训练集,遍历整个folds,实现交叉验证
    for fold in folds:
        train_set=list(folds)
        train_set.remove(fold)
        # 将多个 fold 列表组合成一个 train_set 列表, 类似 union all
        """
        In [20]: l1=[[1, 2, 'a'], [11, 22, 'b']]
        In [21]: l2=[[3, 4, 'c'], [33, 44, 'd']]
        In [22]: l=[]
        In [23]: l.append(l1)
        In [24]: l.append(l2)
        In [25]: l
        Out[25]: [[[1, 2, 'a'], [11, 22, 'b']], [[3, 4, 'c'], [33, 44, 'd']]]
        In [26]: sum(l, [])
        Out[26]: [[1, 2, 'a'], [11, 22, 'b'], [3, 4, 'c'], [33, 44, 'd']]
        """
        train_set=sum(train_set,[])
        test_set=list()
        #fold 表示从原始数据集dataset提取出来的测试集
        for row in fold:
            row_copy=list(row)
            row_copy[-1]=None
            test_set.append(row_copy)
        predicted=algorithm(train_set,test_set,*args)  # 调用算法
        actual=[row[-1] for row in fold]
        
        # 计算随机森林的预测结果的正确率
        accuracy=accuracy_metric(actual,predicted)
        scores.append(accuracy)
    return scores
            
# 加载数据
dataset=loadDataSet('data/7.RandomForest/sonar-all-data.txt')
# print dataset

n_folds=5       # 分成5份数据,进行交叉验证
max_depth=20    # 调参(自己修改) #决策树深度不能太深,不然容易导致过拟合
min_size=1      # 决策树的叶子节点最少的元素数量
sample_size=1.0 #做决策树时候的样本的比例
# n_features=int((len(dataset[0])-1))
n_features=15   #调参(自己修改) # 准确性与多样性之间的权衡
for n_trees in [1,10,20,30,40,50]:   # 理论上树是越多越好
    scores=evalute_algorithm(dataset,randon_forest,n_folds,max_depth,min_size,sample_size,n_trees,n_features)
    #每一次执行本文件时都能产生同一个随机数
    seed(1)       # 使随机数相同
    print('random=',random())
    print('Trees:%d'% n_trees)
    print('Scores:%s'%scores)
    print('Mean Accuracy: %.3f%%'%(sum(scores)/float(len(scores))))

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值