机器学习笔记 十七:基于Gini Importance、Permutation Importance、Boruta的随机森林模型重要性评估的比较

1. 随机森林模型拟合和预测性能

1.1 样本拆分
X = wine.drop('quality', axis = 1)
y = wine['quality']

集合y:

在这里插入图片描述

df_train, df_test = train_test_split(wine, test_size=0.20) # random_state随机状态:保证每次分割的样本一致
df_train = df_train[list(wine.columns)] # 获取wine的列名:Index(['fixed acidity', 'volatile acidity', 'citric acid', 'residual sugar',
                                                        #       'chlorides', 'free sulfur dioxide', 'total sulfur dioxide', 'density',
                                                        #       'pH', 'sulphates', 'alcohol', 'quality'],
df_test = df_test[list(wine.columns)]

X_train, y_train = df_train.drop('quality',axis=1), df_train['quality']
X_test, y_test = df_test.drop('quality',axis=1), df_test['quality']

X_train.shape,y_train.shape,X_test.shape,y_test.shape

((1279, 11), (1279,), (320, 11), (320,))

注意:
若random_state随机状态未设置,将出现下面的情况,即每次划分的结果不一致

在这里插入图片描述

1.2 模型拟合

参数解释:

  • n_estimators : integer, optional (default=10) 整数,可选择(默认值为10)。 森林里决策树的数目。
  • criterion : string, optional (default=”gini”) 字符串,可选择(默认值为“gini”)。衡量分裂质量的性能(函数)。
  • min_samples_leaf : int, float, optional (default=1) 整数,浮点数,可选的(默认值为1)。需要在叶子结点上的最小样本数量:如果为int,那么考虑min_samples_leaf作为最小的数字。
  • n_jobs : integer, optional (default=1) 整数,可选的(默认值为1)。用于拟合和预测的并行运行的工作(作业)数量。如果值为-1,那么工作数量被设置为核的数量。
  • oob_score : bool (default=False) bool,(默认值为False)。是否使用袋外样本来估计泛化精度。
rf = RandomForestClassifier(n_estimators=200,
                            min_samples_leaf=5,
                            n_jobs=-1,
                            oob_score=True,
                            random_state=42)
rf.fit(X_train, y_train)
# 性能预测
print(classification_report(y_test, rf.predict(X_test)))

结果显示:

            precision   recall   f1-score   support

       0       0.91      0.98      0.94       281
       1       0.67      0.31      0.42        39
accuracy                           0.90       320
macro avg      0.79      0.64      0.68       320
weighted avg   0.88      0.90      0.88       320

其中,列表最左边的一列为分类的标签名,右边support列为每个标签的出现次数。avg / total行为各列的均值(support列为总和),precision、recall、f1-score三列分别为各个类别的精确度、召回率及值。
precision: 预测的准确性,获取的所有样本中,正确样本的占比
recall: 实际样本中,有多少样本被正确的预测出来了。
F1 Score: 统计学中用来衡量二分类模型精确度的一种指标。它同时兼顾了分类模型的精确率和召回率。F1分数可以看作是模型精确率和召回率的一种加权平均,它的最大值是1,最小值是0。

举例解释:
某池塘有1400条鲤鱼,300只虾,300只鳖。现在以捕鲤鱼为目的,撒网逮着了700条鲤鱼,200只虾,100只鳖。那么,这些指标分别如下:
精确率 = 700 / (700 +200 + 100) = 70%
召回率 = 700 / 1400 = 50%

1.3 特征重要性

Gini Importance: feature_importances_
gini不纯度: 从一个数据集中随机选取子项,度量其被错误的划分到其他组里的概率,计算式:

在这里插入图片描述
在这里插入图片描述
因此,基尼系数可以做为熵模型的一个近似替代。

基尼不纯度:
(1)基尼不纯度可以作为衡量系统混乱程度的标准;
(2)基尼不纯度越小,纯度越高,集合的有序程度越高,分类的效果越好
(3)基尼不纯度为 0 时,表示集合类别一致;
(4)在决策树中,比较基尼不纯度的大小可以选择更好的决策条件(子节点)

features = np.array(X_train.columns)
# gini不纯度
imps_gini=rf.feature_importances_
std_gini = np.std([tree.feature_importances_ for tree in rf.estimators_], axis=0) # 计算标准差
indices_gini = np.argsort(imps_gini) # 将imps_gini中的元素从小到大排列,提取其在排列前对应的index(索引)输出

plt.title('Feature Importance')
# plt.barh():横向的柱状图,可以理解为正常柱状图旋转了90°
plt.barh(range(len(indices_gini)), imps_gini[indices_gini], yerr=std_gini[indices_gini],color='c', align='center')
plt.yticks(range(len(indices_gini)), features[indices_gini])
plt.xlabel('Gini Importance')
plt.show()

在这里插入图片描述

1.4 Permutation Importance(permutation_importances)
# 从相同的随机数种子出发,可以得到相同的随机数序列
np.random.seed(10)
imps_perm, std_perm = permutation_importances(rf, X_train, y_train,
                              oob_classifier_accuracy

features = np.array(X_train.columns)
indices_perm = np.argsort(imps_perm)

plt.title('Feature Importances')
plt.barh(range(len(indices_perm)), imps_perm[indices_perm], yerr=std_perm[indices_perm],color='c', align='center')
plt.yticks(range(len(indices_perm)), features[indices_perm])
plt.xlabel('Permutation Importance')
plt.show()

在这里插入图片描述

1.5 Boruta
forest = RandomForestClassifier(n_estimators=200,
                                min_samples_leaf=5,
                                n_jobs=-1,
                                oob_score=True,
                                random_state=42)
feat_selector = BorutaPy(forest, verbose=2,max_iter=50)

np.random.seed(10)
import time
start = time.time()
feat_selector.fit(X_train.values, y_train.values)
end = time.time()
print(end - start)# 获取运行时间

迭代发生变化的节点:

BorutaPy finished running.

Iteration: 50 / 50
Confirmed: 8
Tentative: 0
Rejected: 2
169.35201215744019

print('明确的参数: \n',list(np.array(X_train.columns)[feat_selector.ranking_==1]))
print('\n待定的参数: \n',list(np.array(X_train.columns)[feat_selector.ranking_==2]))
print('\n拒绝的参数: \n',list(np.array(X_train.columns)[feat_selector.ranking_>=3]))

明确的参数:
[‘fixed acidity’, ‘volatile acidity’, ‘citric acid’, ‘chlorides’, ‘total sulfur dioxide’, ‘density’, ‘sulphates’, ‘alcohol’]

待定的参数:
[‘free sulfur dioxide’]

拒绝的参数:
[‘residual sugar’, ‘pH’]


2. 特征选择和性能比较

2.1 基于基尼重要性的特征选择

删除基尼重要性小于0.05的参数(3个):‘pH’,‘residual sugar’,‘free sulfur dioxide’

X_train_gini=X_train.drop(['pH','residual sugar','free sulfur dioxide'],axis=1)
X_test_gini=X_test.drop(['pH','residual sugar','free sulfur dioxide'],axis=1)

rf_gini = RandomForestClassifier(n_estimators=300, # 森林里(决策)树的数目
                            min_samples_leaf=5,
                            n_jobs=-1,
                            oob_score=True,
                            random_state=42)
rf_gini.fit(X_train_gini, y_train)
2.2 基于排序重要性的特征选择

删除排序重要性小于0.003的参数(6个):‘chlorides’,‘pH’,‘residual sugar’,‘fixed acidity’,‘free sulfur dioxide’,‘citric acid’

X_train_perm=X_train.drop(['chlorides','pH','residual sugar','fixed acidity','free sulfur dioxide','citric acid'],axis=1)
X_test_perm=X_test.drop(['chlorides','pH','residual sugar','fixed acidity','free sulfur dioxide','citric acid'],axis=1)

rf_gini = RandomForestClassifier(n_estimators=300, # 森林里(决策)树的数目
                            min_samples_leaf=5,
                            n_jobs=-1,
                            oob_score=True,
                            random_state=42)
rf_gini.fit(X_train_gini, y_train)
2.3 基于Boruta的特征选择

删除Boruta的拒绝变量(2个):‘residual sugar’, ‘pH’

X_train_boruta=X_train.drop(['pH','residual sugar'],axis=1)
X_test_boruta=X_test.drop(['pH','residual sugar'],axis=1)

rf_gini = RandomForestClassifier(n_estimators=300, # 森林里(决策)树的数目
                            min_samples_leaf=5,
                            n_jobs=-1,
                            oob_score=True,
                            random_state=42)
rf_gini.fit(X_train_gini, y_train)
2.4 预测性能比较
print('**************************** 原模型 ****************************')
print('\n')
print(classification_report(y_test, rf.predict(X_test)))

print ('\n')

print('****************** 基于基尼重要性的特征选择 ******************')
print('\n')
print(classification_report(y_test, rf_gini.predict(X_test_gini)))

print ('\n')

print('****************** 基于排序重要性的特征选择 ******************')
print('\n')
print(classification_report(y_test, rf_perm.predict(X_test_perm)))

print ('\n')

print('******************** 基于Boruta的特征选择 ********************')
print('\n')
print(classification_report(y_test, rf_boruta.predict(X_test_boruta)))

**************************** 原模型 ****************************

          precision    recall  f1-score   support

       0       0.90      0.97      0.93       274
       1       0.67      0.39      0.49        46

accuracy                           0.88       320
macro avg       0.79      0.68     0.71       320
weighted avg    0.87      0.88     0.87       320

****************** 基于基尼重要性的特征选择 ******************

          precision    recall  f1-score   support

       0       0.90      0.97      0.93       274
       1       0.67      0.39      0.49        46

accuracy                           0.88       320
macro avg       0.79      0.68     0.71       320
weighted avg    0.87      0.88     0.87       320

****************** 基于排序重要性的特征选择 ******************

           precision    recall  f1-score   support 

       0       0.89      0.99      0.94       274
       1       0.76      0.28      0.41        46

accuracy                           0.88       320
macro avg       0.83      0.63     0.67       320
weighted avg    0.87      0.88     0.86       320

******************** 基于Boruta的特征选择 ********************

          precision    recall  f1-score   support

       0       0.90      0.97      0.93       274
       1       0.67      0.39      0.49        46

accuracy                           0.88       320
macro avg       0.79      0.68     0.71       320
weighted avg    0.87      0.88     0.87       320

相比之下,排序重要性的特征选择方法稍好一些。基于Boruta的特征选择只删除了pH和原始模型的结果是一致的,并未对模型产生很大的影响。

随机森林(Random Forest)是一种集成学习方法,它由多个决策树组成。在构建随机森林时,我们需要从数据集中有放回地抽取样本,然后基于随机选择的特征来构建多棵决策树。最终,随机森林的预测结果是多棵决策树的平均值或投票结果。 在随机森林中,特征重要性评估是一项重要的任务。特征重要性评估可以帮助我们了解哪些特征在预测中起到了重要的作用,从而帮助我们进行特征选择和模型优化。随机森林中的特征重要性评估方法主要有两种: 1. 基于 Gini 指数的特征重要性评估 Gini 指数是一种衡量决策树分类效果的指标,它可以用来评估随机森林中每个特征的重要性。具体来说,对于每个特征,我们可以计算出所有决策树上使用该特征的节点的 Gini 指数之和,并将其作为该特征的重要性评分。这种方法认为,在所有决策树中使用某个特征的节点所得到的分类效果越好,该特征的重要性就越高。 2. 基于特征重要性的排列方法 这种方法的原理比较简单,它通过随机打乱某个特征的值,来衡量该特征对模型的影响力。具体来说,我们可以对某个特征的所有样本进行随机重排,然后重新计算模型的预测结果。如果重新排列后的预测结果变化很大,说明该特征对模型的影响力很大;反之,如果变化很小,说明该特征对模型的影响力不大。这种方法可以避免基于 Gini 指数的方法可能存在的一些问题,比如无法识别特征之间的相互作用等。 总的来说,随机森林中的特征重要性评估方法可以帮助我们选择最重要的特征,从而提高模型的预测性能。不同的评估方法有不同的优缺点,我们可以根据具体情况选择使用。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jackson的生态模型

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值