Over the Air Deep Learning Based Radio Signal Classification阅读2017

背景:

A:基线分类方法

         1)统计调制特征:      

高阶统计量HOS,高阶矩HOM

高阶累积量HOC,HOC对于调制类型有很强的区分能力。 

          模拟特征:平均值、标准偏移、标准中心幅度的偏差、中心相位、瞬时频率、正则化瞬时频率绝对值等。

         2)决策准则(用于映射我们的基线特征到标签上):概率推导决策树、SVM、神经网络等,我们选择使用XGBoost方法作为特征分类器,性能优于单一决策树、SVM等。

B:无线信道模型

         无线信道的主要损伤包括:

         载波频偏:由于不同的本地振荡器和运动产生多普勒效应,产生载波相位和频率偏移。

         符号速率偏移:由于不同的时钟源和运动,产生符号时钟偏移和时间扩展。

         延迟扩展:由于多路径上的延迟反射、衍射和传输扩散,产生非脉冲的延迟扩展。

         热噪声:由于物理设备敏感度,在接收处有额外的白噪声损伤。

C:DL分类方法

数据生成方法: 

         生成24种不同的模拟调制和数字调制单载频信号。

         考虑了不同的传播场景:

                   1)下图所示的模型生成的模拟无线信道。

         2)下图所示的没有人工信道损伤的干净的信号的空中(OTA)传输信道。

          数字信号由有一系列滚降系数的根升余弦脉冲整形滤波器整形。

         信道随机初始化,使其不相关,参数如下。

        将数据集分为两种:1)正常数据集,11种低信息密度,在损伤环境中常见的信号,代表高SNR时相对简单的分类任务:OOK, 4ASK, BPSK, QPSK, 8PSK, 16QAM, AM-SSB-SC, AM-DSB-SC, FM, GMSK, OQPSK

        2)困难数据集,24种调制信号,包含被用在高SNR低衰落的现实世界中的高阶调制QAM256和APSK256。由于短时分类问题是一个困难问题,所以在低信噪比(-20dB到30dB)示例种,不可能达到整个数据集上实现接近100%的分类率,从而使其成为比较和未来研究比较的良好基准: OOK, 4ASK, 8ASK, BPSK, QPSK, 8PSK, 16PSK, 32PSK, 16APSK, 32APSK, 64APSK, 128APSK, 16QAM, 32QAM, 64QAM, 128QAM, 256QAM, AM-SSB-WC, AM-SSB-SC, AM-DSB-WC, AM-DSB-SC, FM, GMSK, OQPSK

信号分类模型:

         A:基线方法:使用下表中给出的告诫特征,对每个样本的示例进行计算,将其转化为特征空间,即一系列统计特征的实值。使维度减少,从1024*2->28,使用XGBoost分类信号能优于单一决策树和SVM。

         B:CNN:将VGG原则应用于1维CNN,使用一种简单的DL-CNN设计方法。输入CNN的特征为标准为单位方差的原始的IQ数据,使用实值网络。

         C:残差神经网络:基本的残差单元和残差块如下图,网络结构(l=1024)如下表。

         在完全连接层使用自标准化神经网络,使用SELU激活函数,MRSA初始化,以及Alpha Dropout,相比卷积RELU性能有轻度提升。

         相比之下,l=1035,L=5,RESNET有236344个参数,CNN有257099个训练参数。

感知性能分析:

         探究一些影响分类精度的常用的参数:无线电传播效应,模型大小/深度,数据集大小,观察大小,信号调制类型。

A 低阶调制的分类

         比较在低阶调制类型的正常数据集的性能,训练一百万的样本,样本长1024,在高HNR时VGGCNN和RESNET CNN都取得了良好性能。RESNET的敏感度比起基线模型高出5DB,在高SNR时,resnet获得最高精确度99.8,VGG98.3,基线模型94.6.低SNR时,VGG和RESNET性能差不多。

B AWGN情况下的分类

         如图是在数据集l=1024,N=239616样本,L=6残差块,三种方法的性能,RESNET展现出最好的性能,无论SNR高低。

C 有信道损伤的分类

        探究在信道损伤模型:AWGN,方差0.0001,轻度LO偏移,方差0.01,适度LO偏移和T=0.5到0.4的衰落模型下RESNET的分类性能。

        在有LO偏移时,可能是由于添加的LO偏移导致了原始信号的旋转或扩张,产生正则化效果,性能提高而非降低。而基线模型添加LO偏移和衰落效应,性能只会降低。

        在合适的LO损伤模型比较各方法,发现对于真实系统,RESNE相比基线模型大约有一个6DB的性能提高,在高SNR时精确度提高20%。

 

   D 深度对分类性能的影响

         上图11比较了不同残差块的网络的验证性能,随着深度增加网络性能逐步提高,6层时几乎不变。

E 调制类型对性能的影响

         在低SNR一些低信息速率和结构很不同的信号如AM,FM模拟调制很容易被识别,高阶调制则需要高SNR并且不能达到完美性能。在10dbSNR时,所有信号几乎都达到80%准确率。

         下图是AWGN各类的验证的混淆矩阵,SNR大于等于0,可以看到错误常出现于告诫相位转移(PSK 16-32),高阶QAM信号以及AM调制的WC,SC,由于短时间窗口,这些在预料之中,并且在噪声窗口下,高阶QAM PSK就是很难分开。

 F 训练数据的大小要求

         研究了信号样本的数量N和每个样本的长度l。

        

          上图是样本数量对性能的影响,证明足够的数据量是非常重要的,几乎数据量翻倍,会提高5-20%直到1M,2M花费时间很久但性能并未有明显提高,所以数量的收益递减点处于1M,可以获得高SNR大概95%的精确度,此时N=1M,l=1024,0dB的混淆矩阵如上图15.比起上面AWGN性能有轻微提高。

         下图显示了窗口大小即样本大小对性能的影响,尺寸双倍,获得3%的性能提升(N=240K),l=512/1024达到收益递减点,由于内存要求、训练时间要求和数据集要求,虽然此时窗口CNN扩展的很好,但是此后可能需要额外的扩展策略来获得更大的输入窗口。

G 无线性能

         使用USRP生成24种调制类型的1.44M的信号,80%用于直接训练RESNET,测试得到95.6的精确度,样本处于10DB SNR,混淆矩阵如下图:

 H 无线性能的迁移学习

         模型使用合成数据训练,然后用无线数据微调,迁移学习中更新时,冻结除了最后的三个完全连接层之外的层的参数权重,因为本工作中,很多低维特征工作得很好,不需要在微调中改变。我们最初的模型(N=1M),在无线数据上评估获得精确度64-80%,在无线数据上微调最后两层后,精确度大概可以提升10%,验证精确度如图18,在适当LO偏移(方差=0.0001)性能最好,模型在生成数据上获得94的精确度,在无线数据评估时只下降7%

       我们怀疑,当在越来越严酷的现实世界场景下评估模型的性能时,我们的迁移学习将偏向于同样受损且最接近真实无线条件的合成模型(例如匹配 LO 分布、匹配衰落分布等) .所以直接训练在目标信号的环境或者有好的信道损伤模拟对于模型是非常重要的,对此的可能缓解包括域匹配注意力机制,例如网络架构中的transforme网络 [29],以提高对不同无线传播条件的泛化能力。

        我们还表明,模拟信道效应,尤其是适度的 LO 损伤改善了迁移学习对 OTA 信号评估性能的影响,这一主题将需要在未来进行大量研究以优化用于训练的合成损伤分布。

总结:

        DL模型对于无线信号识别敏感度精确度及短时观察上效果很好,无论是在生成数据训练然后迁移学习到无线信号,或者有足够无线信号直接在上面训练效果都很好,由于获得大量的标记好的数据是很难的,并且信道模型很难匹配真实环境,所以我们量化了这样的性能影响。生成和训练中的这些关键参数,希望有助于增进理解并将未来的工作重点放在优化此类系统上

        迁移学习很重要。。。因为真实数据是不够的。。

  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值