全连接层(Fully connected layer)
定义:全连接层(FC)在整个卷积神经网络中起到“分类器”的作用。如果说卷积层、池化层和激活函数层等操作是将原始数据映射到隐层特征空间的话,全连接层则起到将学到的“分布式特征表示”映射到样本标记空间的作用。在实际使用中,全连接层可由卷积操作实现:对前层是全连接的全连接层可以转化为卷积核为11的卷积;而前层是卷积层的全连接层可以转化为卷积核为hw的全局卷积,h和w分别为前层卷积结果的高和宽。
全连接的核心操作就是矩阵向量乘积:
本质就是由一个特征空间线性变换到另一个特征空间。目标空间的任一维——也就是隐层的一个cell——都认为会受到源空间的每一维的影响。不考虑严谨,可以说,目标向量是源向量的加权和。
在CNN中,全连接常出现在最后几层,用于对前面设计的特征做加权和。比如mnist(是一个手写数字数据集,每张图片都是0-9中的单个数字),前面的卷积和池化相当于做特征工程,后面的全连接相当于做特征加权。(卷积相当于全连接的有意弱化,按照局部视野的启发,把局部之外的弱影响直接抹为零影响;还做了一点强制,不同的局部所使用的参数居然一致。弱化使参数变少,节省计算量,又专攻局部步贪多求全;强制进一步减少参数。少即是多)在RNN(循环神经网络)中,全连接用来把embedding空间拉到隐层空间,把隐层空间转回label空间等。
CNN与全连接
在CNN结构中,经多个卷积层和池化层后,连接着1个或1个以上的全连接层.与MLP(多层感知器)类似,全连接层中的每个神经元与其前一层的所有神经元进行全连接。全连接层可以整合卷积层或者池化层中具有类别区分性的局部信息。为了提升CNN网络性能,全连接层每个神经元的激励函数一般采用ReLU(线性整理函数)函数。最后一层全连接层的输出值被传递给一个输出,可以采用softmax逻辑回归(softmax regression)进行 分 类,该层也可称为 softmax层(softmax layer)。对于一个具体的分类任务,选择一个合适的损失函数是十分重要的,CNN几种常用的损失函数并分析了它们各自的特点。通常,CNN的全连接层与MLP 结构一样,CNN的训练算法也多采用BP算法
举个例子:
最后的两列小圆球就是两个全连接层,在最后一层卷积结束后,进行了最后一次池化,输出了20个1212的图像,然后通过了一个全连接层变成了1100的向量。
这是怎么做到的呢,其实就是有20100个1212的卷积核卷积出来的,对于输入的每一张图,用了一个和图像一样大小的核卷积,这样整幅图就变成了一个数了,如果厚度是20就是那20个核卷积完了之后相加求和。这样就能把一张图高度浓缩成一个数了。全连接的目的是什么呢?因为传统的网络我们的输出都是分类,也就是几个类别的概率甚至就是一个数–类别号,那么全连接层就是高度提纯的特征了,方便交给最后的分类器或者回归。
但是全连接的参数实在是太多了,你想这张图里就有201212100个参数,前面随便一层卷积,假设卷积核是77的,厚度是64,那也才7764,所以现在的趋势是尽量避免全连接,目前主流的一个方法是全局平均值。
也就是最后那一层的feature map(最后一层卷积的输出结果),直接求平均值。有多少种分类就训练多少层,这十个数字就是对应的概率或者叫置信度。