CNN的不足
- 卷积神经网络要在大量的图像上进行训练(或者它们重复使用了神经网络的一部分)
- 卷积神经网络不能很好地处理模糊性
- 卷积神经网络在池化层中丢失了大量信息,降低了空间分辨率,当输入发生微小的变化,输出基本不变,这是一个在整个网络中必须保留详细信息的问题。如今,这个问题通过围绕CNNs构建复杂的体系结构来解决,来恢复一些丢失的信息
- CNN 对物体之间的空间关系 (spatial relationship) 的识别能力不强
- CNN 对物体旋转之后的识别能力不强 (微微旋转还可以)
- 卷积神经网络需要额外的组件来自动识别部件属于哪个目标(例如,这条腿属于这只羊)
CapsE的优势
- 胶囊网络可以很好地推广使用更少的训练数据
- 胶囊网络可以很好地处理模糊性,在拥挤的场景中处理的很好
- 胶囊网络,详细的姿态信息(如精确的目标位置、旋转、厚度、倾斜、大小等)将在整个网络中被保存,而不是丢失了之后再恢复,输入的小变化导致输出的小变化——信息被保存,这就是所谓的“等变化(equivariance)”。因此,胶囊网络可以在不同的视觉任务中使用相同简单一致的架构
- 胶囊网络为你免费提供部件层次
CapsE的不足
- 在大型图像(如CIFAR10或ImageNet)上的性能不如卷积神经网络
- 它们的计算量非常大
- 当两个检测目标离得很近的时候,胶囊网络无法检测到同一类型的两个物体(这被称为