CNN与Capsule Network的对比

本文对比了卷积神经网络(CNN)和胶囊网络(CapsE)的优缺点。CNN在处理模糊性和空间关系识别上存在局限,而CapsE则能更好地处理这些问题,提供部件层次信息并保持等变化特性。尽管CapsE在大型图像处理和计算量上有挑战,但其潜力巨大,尤其是在处理物体旋转和拥挤场景时。胶囊网络由胶囊组成,能检测目标的存在和姿态,通过路由协议进行信息传递和物体识别,适用于解决模糊性和拥挤问题。
摘要由CSDN通过智能技术生成

CNN的不足

  1. 卷积神经网络要在大量的图像上进行训练(或者它们重复使用了神经网络的一部分)
  2. 卷积神经网络不能很好地处理模糊性
  3. 卷积神经网络在池化层中丢失了大量信息,降低了空间分辨率,当输入发生微小的变化,输出基本不变,这是一个在整个网络中必须保留详细信息的问题。如今,这个问题通过围绕CNNs构建复杂的体系结构来解决,来恢复一些丢失的信息
  4. CNN 对物体之间的空间关系 (spatial relationship) 的识别能力不强
  5. CNN 对物体旋转之后的识别能力不强 (微微旋转还可以)
    在这里插入图片描述
  6. 卷积神经网络需要额外的组件来自动识别部件属于哪个目标(例如,这条腿属于这只羊)

CapsE的优势

  1. 胶囊网络可以很好地推广使用更少的训练数据
  2. 胶囊网络可以很好地处理模糊性,在拥挤的场景中处理的很好
  3. 胶囊网络,详细的姿态信息(如精确的目标位置、旋转、厚度、倾斜、大小等)将在整个网络中被保存,而不是丢失了之后再恢复,输入的小变化导致输出的小变化——信息被保存,这就是所谓的“等变化(equivariance)”。因此,胶囊网络可以在不同的视觉任务中使用相同简单一致的架构
  4. 胶囊网络为你免费提供部件层次

CapsE的不足

  1. 在大型图像(如CIFAR10或ImageNet)上的性能不如卷积神经网络
  2. 它们的计算量非常大
  3. 当两个检测目标离得很近的时候,胶囊网络无法检测到同一类型的两个物体(这被称为
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值