1.1简介
在图像处理中,平移变换、旋转变换、缩放变换是一些常用操作。这些几何变换几乎不改变图像的像素值,只是在图像平面上进行像素的重新排列。
在一副输入图像[u,v]中,灰度值仅在整数位置上有定义。
然而,在输出图像[x,y]的灰度值一般由处在非整数坐标上的(u,v)值来决定
这就需要插值算法进行处理,常见的插值算法有近邻插值、双线性插值和三次样条插值
1.2学习目标
- 了解插值算法与常见几何变换之间的关系
- 理解插值算法的原理
- 掌握OpenCV框架下的插值算法API的使用
1.3内容介绍
1、插值算法原理介绍
- 最近邻插值算法
- 双线性插值算法
2、OpenCV代码实践
- cv.resize()各项参数及含义
3、动手实现
1.4 算法理论介绍
1.4.1最近邻插值
最近邻插值,是指将目标图像中的店,对应到源图像中后,找到最相邻的整数点,作为插值后的输出
如上图所示,目标图像中的某点投影到原图像中的位置为点P, f ( P ) = f ( Q 11 ) f(P) = f(Q_{11}) f(P)=f(Q11)
例子:
如下图所示,将一幅3x3的图像放大到4x4,用 f ( x , y ) f(x,y) f(x,y)表示目标图像,有以下公式
f ( d s t X , d s t Y ) = h ( d s t X s r c W i d t h d s t W i d t h , d s t Y s r c H e i g h t d s t H e i g h t ) \begin{array}{c} f(dst{X}, dst{Y}) = h(\frac{dst{X}src{Width}} {dst{Width}}, \frac{dst{Y}src{Height}} {dst{Height}}) \end{array} f(dstX,dstY)=h(dstWidthdstXsrcWidth,dstHeightdstYsrcHeight)
f ( 0 , 0 ) = h ( 0 , 0 ) f ( 0 , 1 ) = h ( 0 , 0.75 ) = h ( 0 , 1 ) f ( 0 , 2 ) = h ( 0 , 1.50 ) = h ( 0 , 2 ) f ( 0 , 3 ) = h ( 0 , 2.25 ) = h ( 0 , 2 ) . . . \begin{array}{c} f(0,0)=h(0,0) \ f(0,1)=h(0,0.75)=h(0,1) \ f(0,2)=h(0,1.50)=h(0,2) \ f(0,3)=h(0,2.25)=h(0,2) \ ...\ \end{array} f(0,0)=h(0,0) f(0,1)=h(0,0.75)=h(0,1) f(0,2)=h(0,1.50)=h(0,2) f(0,3)=h(0,2.25)=h(0,2) ...
缺点:
该方法在放大处理时,在图像中会出现明显的块状效应
1.4.2 双线性插值
线性插值多项式:
f ( x ) = a 1 x + a 0 f(x)=a{1} x+a{0} f(x)=a1x+a0
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-HBsvl64X-1587567253434)(img/3.png)]
y = y 0 + ( x − x 0 ) y 1 − y 0 x 1 − x 0 = y 0 + ( x − x 0 ) y 1 − ( x − x 0 ) y 0 x 1 − x 0 y=y{0}+\left(x-x{0}\right) \frac{y{1}-y{0}}{x{1}-x{0}}=y{0}+\frac{\left(x-x{0}\right) y_{1}-\left(x-x{0}\right) y{0}}{x{1}-x{0}} y=y0+(x−x0)x1−x0y1−y0=y0+x1−x0(x−x0)y1−(x−x0)y0
双线性插值就是线性插值在二维时的推广,在两个方向上做三次线性插值,具体操作如下图所示:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-aqsgw19H-1587567253436)(img/4.png)]
令 f ( x , y ) f(x,y) f(x,y)为两个变量的函数,其在单位正方形顶点的值已知。假设我们希望通过插值得到正方形内任意点的函数值。则可由双线性方程: f ( x , y ) = a x + b y + c x y + d f(x, y)=a x+b y+c x y+d f(x,y)=ax+by+cxy+d
来定义的一个双曲抛物面与四个已知点拟合。
首先对上端的两个顶点进行线性插值得:
f ( x , 0 ) = f ( 0 , 0 ) + x [ f ( 1 , 0 ) − f ( 0 , 0 ) ] f(x, 0)=f(0,0)+x[f(1,0)-f(0,0)] f(x,0)=f(0,0)+x[f(1,0)−f(0,0)]
类似地,再对底端的两个顶点进行线性插值有: f ( x , 1 ) = f ( 0 , 1 ) + x [ f ( 1 , 1 ) − f ( 0 , 1 ) ] f(x, 1)=f(0,1)+x[f(1,1)-f(0,1)] f(x,1)=f(0,1)+x[f(1,1)−f(0,1)]
最后,做垂直方向的线性插值,以确定:
f ( x , y ) = f ( x , 0 ) + y [ f ( x , 1 ) − f ( x , 0 ) ] f(x, y)=f(x, 0)+y[f(x, 1)-f(x, 0)] f(x,y)=f(x,0)+y[f(x,1)−f(x,0)]
整理得:
f ( x , y ) = [ f ( 1 , 0 ) − f ( 0 , 0 ) ] x + [ f ( 0 , 1 ) − f ( 0 , 0 ) ] y + [ f ( 1 , 1 ) + f ( 0 , 0 ) − f ( 0 , 1 ) − f ( 1 , 0 ) ] x y + f ( 0 , 0 ) \begin{array}{l} f(x, y)=[f(1,0)-f(0,0)] x+[f(0,1)-f(0,0)] y \ +[f(1,1)+f(0,0)-f(0,1)-f(1,0)] x y+f(0,0) \end{array} f(x,y)=[f(1,0)−f(0,0)]x+[f(0,1)−f(0,0)]y +[f(1,1)+f(0,0)−f(0,1)−f(1,0)]xy+f(0,0)
1.4.3 映射方法
向前映射法
可以将几何运算想象成一次一个象素地转移到输出图象中。如果一个输入象素被映射到四个输出象素之间的位置,则其灰度值就按插值算法在4个输出象素之间进行分配。称为向前映射法,或象素移交影射。
注:从原图象坐标计算出目标图象坐标镜像、平移变换使用这种计算方法
向后映射法
向后映射法(或象素填充算法)是输出象素一次一个地映射回到输入象素中,以便确定其灰度级。如果一个输出象素被映射到4个输入象素之间,则其灰度值插值决定,向后空间变换是向前变换的逆。
注:从结果图象的坐标计算原图象的坐标
旋转、拉伸、放缩可以使用
解决了漏点的问题,出现了马赛克
python实践
cv2.resize(src, dsize[, dst[, fx[, fy[, interpolation]]]])
函数原型:
cv2.resize(src, dsize[, dst[, fx[, fy[, interpolation]]]])
参数:
参数 | 描述 |
---|---|
src | 【必需】原图像 |
dsize | 【必需】输出图像所需大小 |
fx | 【可选】沿水平轴的比例因子 |
fy | 【可选】沿垂直轴的比例因子 |
interpolation | 【可选】插值方式 |
插值方式:
cv.INTER_NEAREST | 最近邻插值 |
cv.INTER_LINEAR | 双线性插值 |
cv.INTER_CUBIC | 基于4x4像素邻域的3次插值法 |
cv.INTER_AREA | 基于局部像素的重采样 |
通常,缩小使用cv.INTER_AREA,放缩使用cv.INTER_CUBIC(较慢)和cv.INTER_LINEAR(较快效果也不错)。默认情况下,所有的放缩都使用cv.INTER_LINEAR。
代码实践:
import cv2
img = cv2.imread('img/meizi.jpeg')
print('Original Dimensions : ',img.shape)
scale_percent = 30 # percent of original size
width = int(img.shape[1] * scale_percent / 100)
height = int(img.shape[0] * scale_percent / 100)
dim = (width, height)
# resize image
resized = cv2.resize(img, dim, interpolation = cv2.INTER_LINEAR)
fx = 1.5
fy = 1.5
resized1 = cv2.resize(resized, dsize=None, fx=fx, fy=fy, interpolation = cv2.INTER_NEAREST)
resized2 = cv2.resize(resized, dsize=None, fx=fx, fy=fy, interpolation = cv2.INTER_LINEAR)
print('Resized Dimensions : ',resized.shape)
cv2.imshow("Resized image", resized)
cv2.imshow("INTER_NEAREST image", resized1)
cv2.imshow("INTER_LINEAR image", resized2)
cv2.waitKey(0)
cv2.destroyAllWindows()
Original Dimensions : (1200, 801, 3)
Resized Dimensions : (360, 240, 3)
原图像:
缩小
近邻插值
线性插值