机器人学状态估计 第一讲作业

1.证明 ∫ − ∞ ∞ 1 2 π σ 2 e − ( x − u ) 2 2 σ 2 d x = 1 \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-u)^ 2}{2 \sigma^{2}}} d x=1 2πσ2 1e2σ2(xu)2dx=1

证:

x − u 2 σ = t , t ∈ ( − ∞ , ∞ ) \frac{x-u}{\sqrt{2} \sigma}=t, t \in(-\infty, \infty) 2 σxu=t,t(,)

x = 2 σ t + u x=\sqrt{2} \sigma t+u x=2 σt+u,有

∫ − ∞ ∞ 1 2 π σ 2 e − ( x − u ) 2 2 σ 2 d x = ∫ − ∞ ∞ 1 2 π σ 2 e − t 2 d ( 2 σ t + u ) = ∫ − ∞ ∞ 1 π e − t 2 d t \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-u)^{2}}{2 \sigma^{2}}} d x=\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-t^{2}} d(\sqrt{2} \sigma t+u)=\int_{-\infty}^{\infty} \frac{1}{\sqrt{\pi}} e^{-t^{2}} d t 2πσ2 1e2σ2(xu)2dx=2πσ2 1et2d(2 σt+u)=π 1et2dt

∫ − ∞ ∞ e − t 2 d t = π \int_{-\infty}^{\infty} e^{-t^{2}} d t=\sqrt{\pi} et2dt=π 可知

∫ − ∞ ∞ 1 π e − t 2 d t = 1 \int_{-\infty}^{\infty} \frac{1}{\sqrt{\pi}} e^{-t^{2}} d t=1 π 1et2dt=1

∫ − ∞ ∞ 1 2 π σ 2 e − ( x − μ ) 2 2 σ 2 d x = 1 \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x=1 2πσ2 1e2σ2(xμ)2dx=1

2.(第二章第1题) μ , v \pmb \mu, \pmb v μμμ,vvv为维度相同的列向量,证明

u ⊤ v = tr ⁡ ( v u ⊤ ) \pmb u^{\top} \pmb v=\operatorname{tr}\left(\pmb v \pmb u^{\top}\right) uuuvvv=tr(vvvuuu)

证:

μ = [ μ 1 , ⋯   , μ M ] T \pmb \mu=[ \mu_1, \cdots, \mu_M]^T μμμ=[μ1,,μM]T, v = [ v 1 , ⋯   , v M ] T \pmb v=[ v_1, \cdots, v_M]^T vvv=[v1,,vM]T,则
v u ⊤ = [ v 1 ⋮ v m ] [ u 1 ⋯ ⋅ u m ] = [ v 1 u 1 ⋯ ⋯ ⋯ v 1 u m ⋮ ⋱ ⋮ ⋮ v k u k ⋮ ⋮ ⋱ ⋮ v m u 1 ⋯ ⋯ ⋯ v m u m ] \pmb v \pmb u^{\top}=\left[\begin{array}{c} v_{1} \\ \vdots \\ v_{m} \end{array}\right]\left[u_{1} \cdots \cdot u_{m}\right]=\left[\begin{array}{cccc} v_{1} u_{1} & \cdots & \cdots&\cdots & v_{1}u_{m} \\ \vdots & \ddots & & &\vdots& \\ \vdots & & v_{k} u_{k}&&\vdots&\\ \vdots & & &\ddots&\vdots \\ v_{m} u_{1} & \cdots &\cdots & \cdots & v_{m}u_m \end{array}\right] vvvuuu=v1vm[u1um]=v1u1vmu1vkukv1umvmum


tr ⁡ ( v u ⊤ ) = ∑ i = 1 m v i u i = u ⊤ v \operatorname{tr}\left(\pmb v \pmb u^{\top}\right)=\sum_{i=1}^{m} v_{i} u_{i}=\pmb u^{\top} \pmb v tr(vvvuuu)=i=1mviui=uuuvvv

原命题得证

3.(第二章第4题)对于高斯分布随机变量, x ∼ N ( μ , Σ ) \pmb x \sim N(\pmb \mu, \pmb \Sigma) xxxN(μμμ,ΣΣΣ),证明

μ = E ( x ) = ∫ − ∞ ∞ x 1 ( 2 π ) N d e t ( Σ ) exp ⁡ ( − 1 2 ( x − u ) T Σ − 1 ( x − u ) ) d x \pmb\mu=E(\pmb x)=\int_{-\infty}^{\infty} \pmb x \frac{1}{\sqrt{(2 \pi)^{N } det( \Sigma)}} \exp \left(-\frac{1}{2}(\pmb x-\pmb u)^{T} \Sigma^{-1}(\pmb x-\pmb u)\right) d\pmb x μμμ=E(xxx)=xxx(2π)Ndet(Σ) 1exp(21(xxxuuu)TΣ1(xxxuuu))dxxx

证:

因为 Σ \Sigma Σ对称半正定且 Σ \Sigma Σ可逆

Σ \Sigma Σ正定且可相似对角化,即存在单位正交矩阵Q使得

Σ = Q ⊤ Λ Q \Sigma=Q^{\top} \Lambda Q Σ=QΛQ

其中 Λ = [ λ 1 ⋱ λ N ] \Lambda=\left[\begin{array}{lll} \lambda_{1} & & \\ & \ddots & \lambda_{N} \end{array}\right] Λ=[λ1λN], λ i \lambda_{i} λi Σ \Sigma Σ特征值且 λ i > 0 \lambda_{i}>0 λi>0

u = E ( x ) = ∫ − ∞ ∞ x 1 ( 2 π ) N d e t ( Σ ) exp ⁡ ( − 1 2 ( x − u ) ⊤ Q ⊤ Λ Q ( x − u ) ) d x \pmb u=E( \pmb x)=\int_{-\infty}^{\infty} \pmb x \frac{1}{\sqrt{(2 \pi )^{N} d e t(\Sigma)}} \exp \left(-\frac{1}{2}(\pmb x- \pmb u)^{\top} Q^{\top} \Lambda Q(\pmb x- \pmb u)\right) d \pmb x uuu=E(xxx)=xxx(2π)Ndet(Σ) 1exp(21(xxxuuu)QΛQ(xxxuuu))dxxx

t = Q ( x − u ) \pmb t=Q(\pmb x- \pmb u) ttt=Q(xxxuuu), 则 x = Q − 1 t + μ \pmb x=Q^{-1} \pmb t+ \pmb \mu xxx=Q1ttt+μμμ

因为Q的行列式为1,


u = E ( x ) = ∫ − ∞ ∞ Q − 1 t + u ( 2 π ) N d e t ( Σ ) exp ⁡ ( − 1 2 t ⊤ Λ t ) d t = ∫ − ∞ ∞ Q − 1 t ( 2 π ) N det ⁡ ( Σ ) exp ⁡ ( − 1 2 t ⊤ Λ t ) d t + ∫ − ∞ ∞ u ( 2 π ) N d e t ( Σ ) exp ⁡ ( − 1 2 t ⊤ Λ t ) d t \begin{aligned} u=E(x)&=\int_{-\infty}^{\infty} \frac{Q^{-1} \pmb t+ \pmb u}{\sqrt{(2 \pi)^{N} det(\Sigma)}} \exp \left(-\frac{1}{2} \pmb t^{\top} \Lambda \pmb t\right) d \pmb t \\ &= \int_{-\infty}^{\infty} \frac{Q^{-1} \pmb t}{\sqrt{(2 \pi)^{N} \operatorname{det}(\Sigma)}} \exp \left(-\frac{1}{2} \pmb t^{\top} \Lambda \pmb t\right) d \pmb t+\int_{-\infty}^{\infty} \frac{\pmb u}{\sqrt{(2 \pi)^{N}det(\Sigma)} } \exp \left(-\frac{1}{2} \pmb t^{\top} \Lambda \pmb t\right) d \pmb t\\ \end{aligned} u=E(x)=(2π)Ndet(Σ) Q1ttt+uuuexp(21tttΛttt)dttt=(2π)Ndet(Σ) Q1tttexp(21tttΛttt)dttt+(2π)Ndet(Σ) uuuexp(21tttΛttt)dttt

因第一项中被积项为奇函数,积分后为0


u = E ( x ) = ∫ − ∞ ∞ u ( 2 π ) N d e t ( Σ ) exp ⁡ ( − 1 2 t ⊤ Λ t ) d t = ∫ − ∞ ∞ u ( 2 π ) N d e t ( Σ ) exp ⁡ ( − 1 2 ∑ i = 1 N 1 λ i t i 2 ) d t = u ( 2 π ) N ∏ i = N N λ i ∏ i = 1 N ∫ − ∞ ∞ exp ⁡ ( − 1 2 λ i t i 2 ) d t i \begin{aligned} \pmb u=E(\pmb x)&=\int_{-\infty}^{\infty} \frac{\pmb u}{\sqrt{(2 \pi)^{N} d e t(\Sigma)}} \exp \left(-\frac{1}{2} \pmb t^{\top} \Lambda \pmb t\right) d \pmb t\\ &=\int_{-\infty}^{\infty} \frac{\pmb u}{\sqrt{(2 \pi)^{N}det(\Sigma)} } \exp \left(-\frac{1}{2} \sum_{i=1}^{N} \frac{1}{\lambda_{i}} t_{i}^{2}\right) d \pmb t\\ &=\frac{\pmb u}{\sqrt{(2 \pi)^{N}\prod_{i=N}^{N} \lambda_{i}} } \prod_{i=1}^{N} \int_{-\infty}^{\infty} \exp \left(-\frac{1}{2} \lambda_{i} t_{i}^{2}\right) d t_{i} \end{aligned} uuu=E(xxx)=(2π)Ndet(Σ) uuuexp(21tttΛttt)dttt=(2π)Ndet(Σ) uuuexp(21i=1Nλi1ti2)dttt=(2π)Ni=NNλi uuui=1Nexp(21λiti2)dti

z i = 1 2 λ i t i z_i=\frac{1}{\sqrt{2 \lambda_i}}t_i zi=2λi 1ti,有

μ = μ ( 2 π ) N ∏ i = 1 N λ i ∏ i = 1 N 2 λ i ∫ − ∞ ∞ exp ⁡ ( − z i 2 ) d z i = μ \begin{aligned} \pmb \mu &= \frac{\pmb \mu}{\sqrt{(2 \pi)^{N} \prod_{i=1}^{N} \lambda_{i}} } \prod_{i=1}^{N} \sqrt{2 \lambda_{i}} \int_{-\infty}^{\infty} \exp \left(-z_{i}^{2}\right) d z_{i} \\ &= \pmb \mu \end{aligned} μμμ=(2π)Ni=1Nλi μμμi=1N2λi exp(zi2)dzi=μμμ

原式得证

##E 4.(第二章第5题)对于高斯分布随机变量, x ∼ N ( μ , Σ ) \pmb x \sim N(\pmb \mu, \pmb \Sigma) xxxN(μμμ,ΣΣΣ),证明
Σ = E [ ( x − u ) ( x − u ) ⊤ ] = ∫ − ∞ ∞ ( x − u ) ( x − u ) ⊤ 1 ( 2 π ) N det ⁡ ( Σ ) exp ⁡ [ − 1 2 ( x − u ) ⊤ Σ − 1 ( x − u ) ] d x \Sigma= E\left[(\pmb x- \pmb u)(\pmb x- \pmb u)^{\top}\right]=\int_{-\infty}^{\infty}(\pmb x-\pmb u)(\pmb x-\pmb u)^{\top} \frac{1}{\sqrt{(2 \pi)^{N} \operatorname{det}(\Sigma)}} \exp \left[-\frac{1}{2}(\pmb x-\pmb u)^{\top} \Sigma^{-1}(\pmb x-\pmb u)\right] d \pmb x Σ=E[(xxxuuu)(xxxuuu)]=(xxxuuu)(xxxuuu)(2π)Ndet(Σ) 1exp[21(xxxuuu)Σ1(xxxuuu)]dxxx

证:

f ( x ) = Σ ( x − u ) ( x − u ) ⊤ Σ − 1 f(\pmb x)=\Sigma(\pmb x-\pmb u)(\pmb x-\pmb u)^{\top} \Sigma^{-1} f(xxx)=Σ(xxxuuu)(xxxuuu)Σ1,先求 f ( x ) f(\pmb x) f(xxx)期望:

E [ f ( x ) ] = ∫ − ∞ ∞ f ( x ) p ( x ) d x = ∫ − ∞ ∞ ∑ ( x − u ) ( x − u ) T Σ − 1 ( 2 π ) N det ⁡ ( Σ ) exp ⁡ ( − 1 2 ( x − u ) ⊤ Σ − 1 ( x − u ) ) d x = ∫ − ∞ ∞ ∑ y y T ∑ − 1 ( 2 π ) N d e t ( Σ ) exp ⁡ ( − 1 2 y T Σ − 1 y ) d y = ∫ − ∞ ∞ Σ y ( 2 π ) N det ⁡ ( Σ ) ( exp ⁡ ( − 1 2 y ⊤ Σ − 1 y ) Σ − 1 y ) ⊤ d y = ∫ − ∞ ∞ Σ y ( 2 π ) N det ⁡ ( Σ ) d exp ⁡ ⊤ ( − 1 2 y ⊤ Σ − 1 y ) = − Σ ∫ − ∞ ∞ y ( 2 π ) N det ⁡ ( Σ ) d exp ⁡ ( − 1 2 y ⊤ Σ − 1 y ) = − Σ [ y ( 2 π ) N d e t ( Σ ) exp ⁡ ( − 1 2 y ⊤ Σ − 1 y ) ∣ − ∞ ∞ − ∫ − ∞ ∞ 1 ( 2 π ) N d e t Σ exp ⁡ ( − 1 2 y ⊤ Σ − 1 y ) d y ] = − Σ [ 0 − I ] = Σ \begin{aligned} E[f(\pmb x)] &=\int_{-\infty}^{\infty} f(\pmb x) p(\pmb x) d \pmb x \\ &=\int_{-\infty}^{\infty} \frac{\sum(\pmb x-\pmb u)(\pmb x-\pmb u)^{T} \Sigma^{-1}}{\sqrt{(2 \pi)^{N}\operatorname{det}(\Sigma)} } \exp \left(-\frac{1}{2}(\pmb x-\pmb u)^{\top} \Sigma^{-1}(\pmb x-\pmb u)\right) d \pmb x \\ &=\int_{-\infty}^{\infty} \frac{\sum \pmb y \pmb y^{T} \sum^{-1}}{\sqrt{(2 \pi)^{N}d e t(\Sigma)} } \exp \left(-\frac{1}{2} \pmb y^{T} \Sigma^{-1} \pmb y\right) d \pmb y \\ &=\int_{-\infty}^{\infty} \frac{\Sigma \pmb y}{\sqrt{(2 \pi)^{N} \operatorname{det}(\Sigma)}}\left(\exp \left(-\frac{1}{2} \pmb y^{\top} \Sigma^{-1} \pmb y\right) \Sigma^{-1} \pmb y\right)^{\top} d \pmb y \\ &=\int_{-\infty}^{\infty} \frac{\Sigma \pmb y}{\sqrt{(2 \pi)^{N}\operatorname{det}(\Sigma)} } d \exp ^{\top}\left(-\frac{1}{2} \pmb y^{\top} \Sigma^{-1} \pmb y\right) \\ &=-\Sigma \int_{-\infty}^{\infty} \frac{\pmb y}{\sqrt{(2 \pi)^{N} \operatorname{det}(\Sigma)}} d \exp \left(-\frac{1}{2} \pmb y^{\top} \Sigma^{-1} \pmb y\right) \\ &=-\Sigma\left[\left.\frac{\pmb y}{\sqrt{(2 \pi)^{N} d e t(\Sigma)}} \exp \left(-\frac{1}{2} \pmb y^{\top} \Sigma^{-1} \pmb y\right)\right|_{-\infty} ^{\infty}-\int_{-\infty}^{\infty} \frac{1}{\sqrt{(2 \pi)^{N} d e t{\Sigma}}} \exp \left(-\frac{1}{2} \pmb y^{\top} \Sigma^{-1} \pmb y\right) d\pmb y\right]\\ &=-\Sigma[0-I]\\ &=\Sigma \end{aligned} E[f(xxx)]=f(xxx)p(xxx)dxxx=(2π)Ndet(Σ) (xxxuuu)(xxxuuu)TΣ1exp(21(xxxuuu)Σ1(xxxuuu))dxxx=(2π)Ndet(Σ) yyyyyyT1exp(21yyyTΣ1yyy)dyyy=(2π)Ndet(Σ) Σyyy(exp(21yyyΣ1yyy)Σ1yyy)dyyy=(2π)Ndet(Σ) Σyyydexp(21yyyΣ1yyy)=Σ(2π)Ndet(Σ) yyydexp(21yyyΣ1yyy)=Σ[(2π)Ndet(Σ) yyyexp(21yyyΣ1yyy)(2π)NdetΣ 1exp(21yyyΣ1yyy)dyyy]=Σ[0I]=Σ

上面推导过程用到了如下性质:

1.若 Σ \Sigma Σ对称正定

d y ⊤ Σ − 1 y d y = ( Σ − 1 + Σ − T ) y = 2 Σ − 1 y \frac{d \pmb y^{\top} \Sigma^{-1} \pmb y}{d \pmb y}=\left(\Sigma^{-1}+\Sigma^{-T}\right) \pmb y=2 \Sigma^{-1} \pmb y dyyydyyyΣ1yyy=(Σ1+ΣT)yyy=2Σ1yyy

2. exp ⁡ ( − 1 2 y ⊤ Σ − 1 y ) \exp \left(-\frac{1}{2} \pmb y^{\top} \Sigma^{-1} \pmb y\right) exp(21yyyΣ1yyy)对称(可从泰勒展开得出)


E [ f ( x ) ] = E [ Σ ( x − u ) ( x − u ) ⊤ Σ − 1 ] = Σ E [ ( x − u ) ( x − u ) ⊤ ] Σ − 1 = Σ \begin{aligned} E[f(\pmb x)] &=E\left[\Sigma(\pmb x-\pmb u)(\pmb x-\pmb u)^{\top} \Sigma^{-1}\right] \\ &=\Sigma E\left[(\pmb x-\pmb u)(\pmb x-\pmb u)^{\top}\right] \Sigma^{-1} \\ &=\Sigma \end{aligned} E[f(xxx)]=E[Σ(xxxuuu)(xxxuuu)Σ1]=ΣE[(xxxuuu)(xxxuuu)]Σ1=Σ

E [ ( x − u ) ( x − u ) ⊤ ] = Σ E\left[(\pmb x-\pmb u)(\pmb x-\pmb u)^{\top}\right]=\Sigma E[(xxxuuu)(xxxuuu)]=Σ

原命题得证

5.(第二章第6题)对于K个相互独立的高斯变量, x k ∼ N ( μ k , Σ k ) x_k \sim N(\mu_k, \Sigma_k) xkN(μk,Σk),请证明它们的归一化积仍是高斯分布

exp ⁡ ( − 1 2 ( x − u ) ⊤ Σ − 1 ( x − u ) ) = η ∏ k = 1 K exp ⁡ ( − 1 2 ( x − u k ) ⊤ Σ k − 1 ( x − u k ) ) \exp \left(-\frac{1}{2}(\pmb x-\pmb u)^{\top} \Sigma^{-1}(\pmb x-\pmb u)\right)=\eta \prod_{k=1}^{K} \exp \left(-\frac{1}{2}\left( \pmb x-\pmb u_{k}\right)^{\top} \Sigma_{k}^{-1}\left( \pmb x- \pmb u_{k}\right)\right) exp(21(xxxuuu)Σ1(xxxuuu))=ηk=1Kexp(21(xxxuuuk)Σk1(xxxuuuk))

其中
Σ − 1 = ∑ k = 1 K Σ k − 1 Σ − 1 u = ∑ k = 1 K Σ k − 1 u k \Sigma^{-1}=\sum_{k=1}^{K} \Sigma_{k}^{-1} \quad \Sigma^{-1} \pmb u=\sum_{k=1}^{K} \Sigma_{k}^{-1} u_{k} Σ1=k=1KΣk1Σ1uuu=k=1KΣk1uk

证明:
η ∏ k = 1 K exp ⁡ ( − 1 2 ( x − u k ) T Σ k − 1 ( x − u k ) ) = η exp ⁡ [ ∑ k = 1 K − 1 2 ( x − u k ) ⊤ Σ k − 1 ( x − u k ) ] = η exp ⁡ [ − 1 2 x ⊤ ∑ k = 1 k Σ k − 1 x − x ⊤ ∑ k = 1 k Σ k − 1 u k − ∑ k = 1 k u k ⊤ Σ k − 1 x + ∑ k = 1 k u k ⊤ Σ k − 1 u k ) ] \begin{aligned} \eta \prod_{k=1}^{K} \exp \left(-\frac{1}{2}\left(\pmb x- \pmb u_{k }\right)^{T} \Sigma_{k}^{-1}\left(\pmb x-\pmb u_{k}\right)\right) &= \eta \exp \left[\sum_{k=1}^{K}-\frac{1}{2}\left(\pmb x-\pmb u_{k}\right)^{\top} \Sigma_{k}^{-1}\left(\pmb x-\pmb u_{k}\right)\right] \\ &= \eta \exp \left[-\frac{1}{2} \pmb x^{\top} \sum_{k=1}^{k} \Sigma_{k}^{-1} \pmb x-\pmb x^{\top} \sum_{k=1}^{k} \Sigma_{k}^{-1} \pmb u_{k}-\sum_{k=1}^{k} \pmb u_{k}^{\top} \Sigma_{k}^{-1} \pmb x+\sum_{k=1}^{k} \pmb u_{k}^{\top} \Sigma_{k}^{-1} \pmb u_{k}) \right] \\ \end{aligned} ηk=1Kexp(21(xxxuuuk)TΣk1(xxxuuuk))=ηexp[k=1K21(xxxuuuk)Σk1(xxxuuuk)]=ηexp[21xxxk=1kΣk1xxxxxxk=1kΣk1uuukk=1kuuukΣk1xxx+k=1kuuukΣk1uuuk)]

M = ( ∑ k = 1 K Σ k − 1 U k ) ⊤ ( ∑ k = 1 k ∑ k − 1 ) − 1 ( ∑ k = 1 k Σ k − 1 U k ) M=\left(\sum_{k=1}^{K} \Sigma_{k}^{-1} U_{k}\right)^{\top}\left(\sum_{k=1}^{k} \sum_{k}^{-1}\right)^{-1}\left(\sum_{k=1}^{k} \Sigma_{k}^{-1} U_{k}\right) M=(k=1KΣk1Uk)(k=1kk1)1(k=1kΣk1Uk)

η ∏ k = 1 K exp ⁡ ( − 1 2 ( x − u k ) T Σ k − 1 ( x − u k ) ) = η exp ⁡ [ − 1 2 ( x T ∑ k = 1 K Σ k − 1 x − x ⊤ ∑ k = 1 k Σ k − 1 u k − ∑ k = 1 k u k ⊤ Σ k − 1 x + M ) + 1 2 M + 1 2 ∑ k = 1 K u k ⊤ Σ k − 1 u k ] = η exp ⁡ [ 1 2 M + 1 2 ∑ k = 1 K u k T Σ k − 1 u k ] exp ⁡ [ − 1 2 x ⊤ ∑ k = 1 K Σ k = 1 − 1 x − x T ∑ k = 1 K Σ k − 1 u k − ∑ k = 1 T u k T Σ k − 1 x + M ] = η ′ exp ⁡ [ − 1 2 ( x − ( ∑ k = 1 k Σ k − 1 ) − 1 ∑ k = 1 k Σ k − 1 u k ) T ∑ k = 1 K Σ k − 1 ( x − ( ∑ k = 1 K Σ k − 1 ) − 1 ∑ k = 1 k Σ k − 1 u k ) ] = η ′ exp ⁡ [ − 1 2 ( x − u ) ⊤ Σ − 1 ( x − u ) ] ( 记 Σ − 1 = ∑ k = 1 K Σ k − 1 u = Σ − 1 ∑ k = 1 K Σ k − 1 u k ) \begin{aligned} \eta \prod_{k=1}^{K} \exp \left(-\frac{1}{2}\left(\pmb x- \pmb u_{k }\right)^{T} \Sigma_{k}^{-1}\left(\pmb x-\pmb u_{k}\right)\right) &= \eta \exp \left[-\frac{1}{2}\left(\pmb x^T \sum_{k=1}^{K} \Sigma_{k}^{-1} \pmb x- \pmb x^{\top} \sum_{k=1}^{k} \Sigma_{k}^{-1} \pmb u_{k}-\sum_{k=1}^{k} \pmb u_{k}^{\top} \Sigma_{k}^{-1} \pmb x+M\right)+\frac{1}{2} M+\frac{1}{2} \sum_{k=1}^{K} \pmb u_{k}^{\top} \Sigma_{k}^{-1} \pmb u_{k}\right] \\ &= \eta \exp \left[\frac{1}{2} M+\frac{1}{2} \sum_{k=1}^{K} \pmb u_{k}^{T} \Sigma_{k}^{-1} \pmb u_{k}\right] \exp \left[-\frac{1}{2} \pmb x^{\top} \sum_{k=1}^{K} \Sigma_{k=1}^{-1} \pmb x-\pmb x^{T} \sum_{k=1}^{K}\Sigma_{k}^{-1} \pmb u_{k}-\sum_{k=1}^{T} \pmb u_{k}^{T} \Sigma_{k}^{-1} \pmb x+M \right] \\ &= \eta^{\prime} \exp \left[-\frac{1}{2}\left(\pmb x-\left(\sum_{k=1}^{k} \Sigma_{k}^{-1}\right)^{-1} \sum_{k=1}^{k} \Sigma_{k}^{-1} \pmb u_{k}\right)^{T} \sum_{k=1}^{K} \Sigma_{k}^{-1}\left(\pmb x-\left(\sum_{k=1}^{K} \Sigma_{k}^{-1}\right)^{-1} \sum_{k=1}^{k} \Sigma_{k}^{-1} \pmb u_{k}\right)\right] \\ &= \eta^{\prime} \exp \left[-\frac{1}{2}(\pmb x-\pmb u)^{\top} \Sigma^{-1}(\pmb x-\pmb u)\right]\left(记 \Sigma^{-1}=\sum_{k=1}^{K} \Sigma_{k}^{-1} \quad \pmb u=\Sigma^{-1} \sum_{k=1}^{K} \Sigma_{k}^{-1} \pmb u_{k}\right) \end{aligned} ηk=1Kexp(21(xxxuuuk)TΣk1(xxxuuuk))=ηexp[21(xxxTk=1KΣk1xxxxxxk=1kΣk1uuukk=1kuuukΣk1xxx+M)+21M+21k=1KuuukΣk1uuuk]=ηexp[21M+21k=1KuuukTΣk1uuuk]exp[21xxxk=1KΣk=11xxxxxxTk=1KΣk1uuukk=1TuuukTΣk1xxx+M]=ηexp21xxx(k=1kΣk1)1k=1kΣk1uuukTk=1KΣk1xxx(k=1KΣk1)1k=1kΣk1uuuk=ηexp[21(xxxuuu)Σ1(xxxuuu)](Σ1=k=1KΣk1uuu=Σ1k=1KΣk1uuuk)

上式中
{ Σ − 1 = ∑ k = 1 K Σ k − 1 u = Σ ∑ k = 1 K Σ k − 1 u k ⇒ Σ − 1 u = ∑ k = 1 k Σ k − 1 u k η ′ = η exp ⁡ [ 1 2 u ⊤ Σ − 1 u + 1 2 ∑ k = 1 k u k ⊤ Σ k − 1 u k ] \left\{\begin{array}{l} \Sigma^{-1}=\sum_{k=1}^{K} \Sigma_{k}^{-1} \\ \pmb u=\Sigma \sum_{k=1}^{K} \Sigma_{k}^{-1} \pmb u_{k} \Rightarrow \Sigma^{-1} \pmb u=\sum_{k=1}^{k} \Sigma_{k}^{-1} \pmb u_{k} \\ \eta^{\prime}=\eta \exp \left[\frac{1}{2} \pmb u^{\top} \Sigma^{-1} \pmb u+\frac{1}{2} \sum_{k=1}^{k} \pmb u_{k}^{\top} \Sigma_{k}^{-1} \pmb u_{k}\right] \end{array}\right. Σ1=k=1KΣk1uuu=Σk=1KΣk1uuukΣ1uuu=k=1kΣk1uuukη=ηexp[21uuuΣ1uuu+21k=1kuuukΣk1uuuk]
原命题得证

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值