数字图像处理学习(1)——图像插值Python代码实现

最近在学习数字图像处理,打算长期记录下来。

1. 图像插值 (Image Interpolation)

当我们需要放大或者缩小一张数字图像的时候,我们所进行的操作称之为Image Interpolation

例如:把一张 275*185 的图像转化为原图的一半大小,如下:

在这里插入图片描述                                                                            在这里插入图片描述

实际上就是根据原来的图片中,所有像素点,按照某种关系在新的图片当中进行 pixel填充的一种操作,这种操作最常见的有几种方法:

  • 最近邻插值法(Nearest Neighbor Interpolation)
  • 双线性插值法(bilinear interpolation)
  • 双三次插值法(bicubic interpolation)

在介绍方法之前,我先总结下个人对图像插值整体思路描述,可以分为4步曲:

  1. 读取图片
  2. 选定插值算法
  3. pixel 填充
  4. 新图片保存

2. 最近邻插值法

2.1 最近邻插值法

这是最简单、易懂的一种方法。

设原图片的大小为 ( h e i g h t , w i d t h ) (height, width) (height,width), 图片中某一个像素点的位置为 ( s r c x , s r c y ) (srcx, srcy) (srcx,srcy)

目标图片的大小为 ( d e s h e i g h t , d e s w i d t h ) (desheight, deswidth) (desheight,deswidth). 目标图片中某一个像素点的位置为 ( d e s x , d e s y ) (desx, desy) (desx,desy)
在这里插入图片描述

根据等比例关系,易得如下关系:

s r c x = d e s x ⋅ ( w i d t h / d e s w i d t h ) srcx=desx·(width/deswidth) srcx=desx(width/deswidth)
s r c y = d e s y ⋅ ( h e i g h t / d e s h e i g h t ) srcy=desy·(height/desheight) srcy=desy(height/desheight)

其中会遇到小数的值,那么则一般可以设置四舍五入的方式取整,选择位置。

2.2 最近邻插值法(Python 代码实现——图像缩小)

#!/usr/bin/env python
# encoding: utf-8
"""
@author: H
@software: Pycharm
@file: ImageInterpolation.py
@time: 2020/10/16 8:28
"""


import os
import numpy as np
from PIL import Image

file_path = r'D:\postgraduate\first_year\数字图像处理\作业\homework1\practice1\image\jerry.jpg'
img = Image.open(file_path)  # 读取图片,格式为Image

# 把Image格式的图片转化为numpy格式进性图像处理
img = np.array(img, dtype=np.uint8)

height, width, mode = img.shape[0], img.shape[1], img.shape[2]  # 取出高、宽、通道数
print(height, width, mode)  # (275 183 3)

# 缩放的目标大小,这里以缩放为原图的1/2为例
desWidth = int(width * 0.5)
desHeight = int(height * 0.5)
desImage = np.zeros((desHeight, desWidth, mode), np.uint8)  # 定义一个目标图片代表的array,纯黑图片

# 像素填充
# 方法1:最近邻插值法
for des_x in range(0, desHeight):
    for des_y in range(0, desWidth):
        # 判断新像素点在原图中的像素点坐标
        src_x = int(des_x * (height/desHeight))
        src_y = int(des_y * (width/desWidth))

        desImage[des_x, des_y] = img[src_x, src_y]  # 填充
print(desImage.shape)
des_img = Image.fromarray(desImage)
des_img.save('./image/jerry.jpg')  # 图片另存为

2.3 运行结果示例

在这里插入图片描述                                                                           缩小后
       缩放前                                                                                                 缩放后


3. 双线性插值法

3.1 双线性插值法

在介绍双线性插值之前,我们需要知道单线性插值的概念。

已知要求点 ( x , y ) (x,y) (x,y)某一条直线上(某一维度),其他两个点坐标为: ( x 0 , y 0 ) (x_0,y_0) (x0,y0), ( x 1 , y 1 ) (x_1,y_1) (x1,y1)

其中 y y y 是关于 x x x 的某种函数,根据 x x x 计算出 x x x 对应的像素值 y y y
在这里插入图片描述
可以得出:
在这里插入图片描述
这个结果就好比,一条直线上的两个磁铁,对中间的铁块的力的作用的矢量叠加(不考虑方向)。
在这里插入图片描述

  • 式子第一项: ( x , f ( x ) ) (x,f(x)) (x,f(x)) ( x 1 , f ( x 1 ) ) (x_1,f(x_1)) (x1,f(x1))的距离为 ( x 1 − x ) (x_1-x) (x1x);当无限靠近 ( x 1 , f ( x 1 ) ) (x_1,f(x_1)) (x1,f(x1))时, f ( x ) f(x) f(x) 就无限接近 f ( x 1 ) f(x_1) f(x1),最终等于 f ( x 1 ) f(x_1) f(x1)
  • 式子第二项: ( x , f ( x ) ) (x,f(x)) (x,f(x)) ( x 0 , f ( x 0 ) ) (x_0,f(x_0)) (x0,f(x0))的距离为 ( x − x 0 ) (x-x_0) (xx0);当无限靠近 ( x 0 , f ( x 0 ) ) (x_0,f(x_0)) (x0,f(x0))时, f ( x ) f(x) f(x) 就无限接近 f ( x 0 ) f(x_0) f(x0),最终等于 f ( x 0 ) f(x_0) f(x0)

总结为:

f ( x ) = x 1 − x x 1 − x 0 ⋅ f ( x 0 ) + x − x 0 x 1 − x 0 ⋅ f ( x 1 ) f(x)=\frac{x_1-x}{x_1-x_0}·f(x_0)+\frac{x-x_0}{x_1-x_0}·f(x_1) f(x)=x1x0x1xf(x0)+x1x0xx0f(x1)


双线性插值法实际上就是进行了两个维度的单线性插值。可分为:

  • 两次水平方向的单线性插值( x x x 轴)
  • 根据 x x x 的结果进行一次垂直方向的单线性插值( y y y 轴)

当然 x x x y y y 可以互换。

这是找的一张比较经典的图:
在这里插入图片描述

结合单线性插值的结论,可以进行如下运算:
① 两次 x x x 轴的线性插值

f ( R 1 ) = x 2 − x x 2 − x 1 ⋅ f ( Q 11 ) + x − x 1 x 2 − x 1 ⋅ f ( Q 21 ) f(R_1)=\frac{x_2-x}{x_2-x_1}·f(Q_{11})+\frac{x-x_1}{x_2-x_1}·f(Q_{21}) f(R1)=x2x1x2xf(Q11)+x2x1xx1f(Q21)

f ( R 2 ) = x 2 − x x 2 − x 1 ⋅ f ( Q 12 ) + x − x 1 x 2 − x 1 ⋅ f ( Q 22 ) f(R_2)=\frac{x_2-x}{x_2-x_1}·f(Q_{12})+\frac{x-x_1}{x_2-x_1}·f(Q_{22}) f(R2)=x2x1x2xf(Q12)+x2x1xx1f(Q22)

② 进行一次 y y y 轴的线性插值

f ( P ) = y 2 − y y 2 − y 1 ⋅ f ( R 1 ) + y − y 1 y 2 − y 1 ⋅ f ( R 2 ) f(P)=\frac{y_2-y}{y_2-y_1}·f(R_1)+\frac{y-y_1}{y_2-y_1}·f(R_{2}) f(P)=y2y1y2yf(R1)+y2y1yy1f(R2)

联合① ②两式(害,偷个懒直接上才草稿),可得:
在这里插入图片描述

3.2 双线性插值法(Python代码实现——图片放大)

#!/usr/bin/env python
# encoding: utf-8
"""
@author: H
@software: Pycharm
@file: ImageInterpolation1.py
@time: 2020/10/17 20:31
"""

import os
import numpy as np
from PIL import Image

"""
    图像缩放常见三种方法的实现:
        - 最近邻插值法
        - 双线性插值法
        - 双立方插值法
"""


def Interpolation_NNI(filepath):
    """
        最近邻插值法(nearest neighbor interpolation)
    :param filepath:
    :return:
    """
    img = Image.open(file_path)  # 读取图片,格式为Image
    # img.show()  # 显示图片

    # 把Image格式的图片转化为numpy格式进性图像处理
    img = np.array(img, dtype=np.uint8)

    height, width, mode = img.shape[0], img.shape[1], img.shape[2]  # 取出高、宽、通道数
    print(height, width, mode)  # (275 183 3)

    # 缩放的目标大小,这里以缩放为原图的1/2为例
    desWidth = int(width * 0.5)
    desHeight = int(height * 0.5)
    desImage = np.zeros((desHeight, desWidth, mode), np.uint8)  # 定义一个目标图片代表的array,纯黑图片

    # 像素填充
    # 方法1:最近邻插值法
    for des_x in range(0, desHeight):
        for des_y in range(0, desWidth):
            # 判断新像素点在原图中的像素点坐标
            src_x = int(des_x * (height / desHeight))
            src_y = int(des_y * (width / desWidth))
            desImage[des_x, des_y] = img[src_x, src_y]  # 填充
    print(desImage.shape)
    des_img = Image.fromarray(desImage)
    des_img.save('./image/jerry.jpg')


def Interpolation_Bilinear(filepath, desHeight, desWidth):
    # 双线性插值法
    img = Image.open(filepath)  # 读取图片
    img = np.array(img, np.uint8)  # 转化为numpy数组
    desImageNumpy = np.zeros(img.shape, np.uint8)  # 生成一个大小相同的全0的numpy数组
    height, width, mode = img.shape[0], img.shape[1], img.shape[2]  # 高、宽、channel数

    # 找出目标位置在源图中的位置
    scale_x = float(width)/desWidth  # x轴缩放比例
    scale_y = float(height)/desHeight  # y轴缩放比例
    des_image = np.zeros((desHeight, desWidth, mode), np.uint8)
    for n in range(mode):
        for des_y in range(desHeight):
            for des_x in range(desWidth):
                # 确定四个近邻点坐标
                src_x = (des_x + 0.5) * scale_x - 0.5  #
                src_y = (des_y + 0.5) * scale_y - 0.5

                src_x_1 = int(np.floor(src_x))  #
                src_y_1 = int(np.floor(src_y))
                src_x_2 = min(src_x_1+1, width-1)  # 防止坐标点寻找溢出
                src_y_2 = min(src_y_1+1, height-1)
                # 两次x轴线性插值
                value_1 = (src_x_2 - src_x)*img[src_y_1, src_x_1, n]+(src_x - src_x_1)*img[src_y_1, src_x_2, n]
                value_2 = (src_x_2 - src_x)*img[src_y_2, src_x_1, n]+(src_x - src_x_1)*img[src_y_2, src_x_2, n]
                # y轴线性插值
                des_image[des_y, des_x, n] = (src_y_2 - src_y)*value_1 + (src_y - src_y_1)*value_2
    print(des_image.shape)
    des_img = Image.fromarray(des_image)
    des_img.save('./image/new_bilinear.jpg')


if __name__ == '__main__':
    file_path = r'D:\postgraduate\first_year\数字图像处理\作业\homework1\practice1\image\kobe1.jpg'
    Interpolation_Bilinear(file_path, int(183*2), int(275*2))  # 双线性插值法


3.3 结果展示

在这里插入图片描述                                    在这里插入图片描述


像这张放大的图片的男人一样,加油加油!

  • 27
    点赞
  • 82
    收藏
    觉得还不错? 一键收藏
  • 6
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值