深度学习的实用层面 —— 1.2 偏差/方差

假设有一个数据集,如果给这个数据集拟合一条直线,可能得到一份逻辑回归拟合,但它并不能很好地拟合该数据集,这就是偏差高的情况,我们称为欠拟合。在这里插入图片描述

相反地,如果我们拟合一个非常复杂的分类器,比如深度神经网络或含有隐藏单元的神经网络,可能就非常适用于这个数据集,但是这看起来也不是一种很好的拟合方式,分类器方差较高,数据过度拟合。
在这里插入图片描述
在两者之间,可能还有一些像图中这样的,复杂度适中,数据拟合适度的分类器,这个数据拟合看起来更加合理,我们称之为适度拟合,是介于过拟合和欠拟合中间的一类。
在这里插入图片描述
在这样一个只有 x 1 x1 x1 x 2 x2 x2两个特征的二维数据集中,我们可以绘制数据,将偏差和方差可视化,在多维空间数据中,绘制数据和可视化分隔边界无法实现,但我们可以通过几个指标来研究偏差和方差。
在这里插入图片描述
我们沿用猫咪图片分类这个例子,理解偏差和方差的两个关键数据是训练集误差和验证集误差。为方便论证,假设我们可以辨别图片中的小猫,我们用肉眼识别几乎是不会出错的,假定训练集错误率是1%。为方便论证,假设验证集错误率是11%,可以看出训练集设置得非常好,而验证集设置相对较差,我们可能过度拟合了训练集。某种程度上,验证集并没有充分利用交叉验证集的作用。像这种情况,我们称之为高方差。通过查看训练集误差和验证集误差,我们便可以诊断算法是否具有高方差,也就是说衡量训练集和验证集误差得出不同结论。

假设训练集错误率为15%,验证集错误率是16%,假设该案例中人的错误率几乎为0%,人们浏览这些图片,分辨出是不是猫,算法并没有在训练集中得到很好训练,如果训练数据的拟合度不高,就是数据欠拟合,就可以说这种算法偏差比较高。相反,它对于验证集产生的结果却是合理的,验证集中的错误率只比训练集的多了1%,所以这种算法偏差高,因为它甚至不能拟合训练集。

再举一个例子,训练集的错误率是15%,偏差相当高,但是验证集的评估结果更糟糕,错误率达到30%,这种情况下,会认为这种算法偏差高,因为它在训练集上结果不理想,方差也很高,这是方差和偏差都很糟糕的情况。

最后再看一个例子,训练集的错误率是5%,验证集的错误率是1%,猫咪分类器只有1%的错误率,偏差和方差都很低。

有一点先简单提一下,这些分析都是基于假设预测的,假设人眼辨别的错误率接近0%,一般来说,最优误差也被称为贝叶斯误差,所以最优误差接近0%。如果最优误差或贝叶斯误差非常高,比如15%,看看这个分类器,15%的错误率对于训练集来说也是非常合理的,偏差不高,方差也非常低。

当所有分类器都不适用时,如何分析偏差和方差呢?比如,图片很模糊,即使是人眼或者没有系统可以准确无误地识别图片,这种情况下,最优误差会更高,那么分析过程就要做些改变了。

以上分析的前提都是假设基本误差很小,训练集和验证集数据来自相同分布,如果没有这些假设作为前提,分析过程会更加复杂。

我们讲了高偏差和高方差的情况,应该对优质分类器有了一定的认识,偏差和方差都高是什么样子呢?这种情况对于两种衡量标准来说都是非常糟糕的。
在这里插入图片描述
我们之前讲过,这样的分类器会产生高偏差,因为它的数据拟合低,像这种接近线性的分类器,数据拟合度低。但如果我们稍微改变一下分类器,它会过度拟合部分数据,如图所示画出的分类器具有高偏差和高方差。偏差高是因为它几乎是一条线性分类器,并未拟合数据。
在这里插入图片描述
这种二次曲线能够很好地拟合数据,这种曲线中间灵活性非常高,却过度拟合了两个样本。这类分类器偏差很高,因为它几乎是线性的,而采用曲线函数或二次元函数会产生高方差,因为它曲线灵活性太高,以致拟合了这两个错误样本和中间这些活跃数据,这看起来有点不自然,从两个维度上看都不太自然。但对于高维数据,有些数据区域偏差高,有些数据区域方差高,所以在高维数据中采用这种分类器看起来就不会这么牵强了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值