机器学习—特征工程(三)

什么是特征工程

特征工程是使用专业背景知识和技巧处理数据,使得特征能在机器学习算法上发挥更好的作用的过程。

  • 意义︰会直接影响机器学习的效果

特征工程的位置与数据处理的比较

在这里插入图片描述

  • pandas:—个数据读取非常方便以及基本的处理格式的工具
  • sklearn:对于特征的处理提供了强大的接口

sklearn 特征工程
pandas 数据清洗、数据处理

特征工程包含内容

  • 特征抽取
  • 特征预处理
  • 特征降维

什么是特征抽取

例一:
在这里插入图片描述
机器学习算法——统计方法——数学公式
文本类型—>数值

例二:
在这里插入图片描述
类型——>数值

特征提取

将任意数据(如文本或图像)转换为可用于机器学习的数字特征

注:特征值化是为了计算机更好的去理解数据

  • 字典特征提取(特征离散化)
  • 文本特征提取
  • 图像特征提取(深度学习将介绍)

特征提取API

sklearn.feature_extraction

字典特征提取

类别——>one-hot编码

作用:对字典数据进行特征值化

  • sklearn.feature_extraction.DictVectorizer(sparse=True,. . .)
    • DictVectorizer.fit_transform(X)×:字典或者包含字典的迭代器返回值:返 回sparse矩阵
    • DictVectorizer.inverse_transform(X) X:array数组或者sparse矩阵返回值:转换之前数据格式
    • DictVectorizer.get_feature_names()返回类别名称

vector 数学:向量 物理:矢量
矩阵 matrix 二维数组
向量 vector 一维数组
父类:transformer

1应用

[{i'city': '北京', ' temperature ' :100},
{ ' city ' : '上海', ' temperature ':60},
{ 'city ': '深圳', ' temperature ' :30}]

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

sparse=True返回稀疏矩阵,元组表示非0值的位置
sparse=False范围二维数组
稀疏矩阵好处就是节省内存,提高加载效率

2流程分析

  • 实例化类DictVectorizer
  • 调用fit_transform方法输入数据并转换(注意返回格式)
from sklearn.feature_extraction import DictVectorizer

def dict_demo( ) :
	data = [{i'city': '北京', ' temperature ' :100},{ ' city ' : '上海', ' temperature ':60},{ 'city ': '深圳', ' temperature ' :30}]
	#1、实例化一个转换器类
	transfer = DictVectorizer(sparse=False)
	#2、调用fit_transform
	data = transfer.fit_transform(data)
	print("返回的结果:\n",data)
	#打印特征名字
	print("特征名字: \n",transfer.get_feature_names( ))
	return None

注意观察没有加上sparse=False参数的结果

pandas中的离散化的时候,也实现了类似的效果。这个处理数据的技巧叫做”one-hot“编码:
在这里插入图片描述
在这里插入图片描述

3总结
对于特征当中存在共别信息的我们都会做one-hot编码处理

4应用场景

  • 数据集当中类别特征比较多
    • 将数据集的特征——>字典类型
    • bictVectorizer转换
  • 本身拿到的数据就是字典类型

文本特征提取

作用:对文本数据进行特征值化

  • sklearn.feature_extraction.text.CountVectorizer(stop_words=[])
    • 返回词频矩阵
  • CountVectorizer.fit_transform(X) X:文本或者包含文本字符串的可迭代对象
    • 返回值:返回sparse矩阵
  • CountVectorizer.inverse_transform(X) X:array数组或者sparse矩阵
    • 返回值:转换之前数据格
  • CountVectorizer.get_feature_names()
    • 返回值:单词列表
  • sklearn.feature_extraction.text.TfidfVectorizer

1应用
我们对以下数据进行特征提取

["life is short,i like python" ,
"life is too long,i dislike python"]

在这里插入图片描述

在这里插入图片描述

没有sparse=True参数,用.toarray()
单词作为特征,统计每个样本特征词出现的个数

方法1: CountVectorizer

在这里插入图片描述
在这里插入图片描述

中文没有空格的分割
data =[“我 爱 北京 天安门”,“天安门 上 太阳 升"]
在这里插入图片描述

stop_words停用词
在这里插入图片描述在这里插入图片描述

2流程分析

  • 实例化类CountVectorizer
  • 调用fit_transform方法输入数据并转换(注意返回格式,利用toarray()进行sparse矩阵转换array数组)
from sklearn.feature_extraction.text import CountVectorizer

def text_count_demo():
	data = ["life is short,i like python" ,"life is too long,i dislike python"]
	#1、实例化一个转换器类
	# transfer = CountVectorizer(sparse=False)
	transfer = CountVectorizer( )
	#2、调用fit_transform
	data = transfer.fit_transform(data)
	print("文本特征抽取的结果:\n", data.toarray())
	print("返回特征名字:\n",transfer.get_feature_names())

	return None

在这里插入图片描述
在这里插入图片描述

3jieba分词处理

  • jieba.cut()
    • 返回词语组成的生成器

需要安装下jieba库

pip3 install jieba

4案例分析
对以下三句话进行特征值化

今天很残酷,明天更残酷,后天很美好,
但绝对大部分是死在明天晚上,所以每个人不要放弃今天。

我们看到的从很远星系来的光是在几百万年之前发出的,
这样当我们看到宇宙时,我们是在看它的过去。

如果只用一种方式了解某样事物,你就不会真正了解它。
了解事物真正含义的秘密取决于如何将其与我们所了解的事物相联系。
  • 分析
    • 准备句子,利用jieba.cut进行分词
    • 实例化CountVectorizer
    • 将分词结果变成字符串当作fit_transform的输入值
from sklearn.feature_extraction.text import Countvectorizer
import jieba

def cut_word (text):
#用结巴对中文字符串进行分词
	text = " ".join(list(jieba.cut(text)))
	return text

def text_chinese_count_demo2():
	data = ["今天很残酷,明天更残酷,后天很美好,
但绝对大部分是死在明天晚上,所以每个人不要放弃今天。","我们看到的从很远星系来的光是在几百万年之前发出的,这样当我们看到宇宙时,我们是在看它的过去。","如果只用一种方式了解某样事物,你就不会真正了解它。了解事物真正含义的秘密取决于如何将其与我们所了解的事物相联系。"]
	#将原始数据转换成分好词的形式
	text_list = []
	
	for sent in data;
		text_list.append(cut_word(sent))
	print(text_list)
	
	#1、实例化一个转换器类
	#transfer = CountVectorizer(sparse=False)
	transfer = 	CountVectorizer()
	#2、调用fit_transform
	data = transfer.fit_transform(text_list)
	print("文本特征抽取的结果:\n", data.toarray( ))
	print("返回特征名字:\n", transfer.get_feature_names())

	return None

在这里插入图片描述

关键词∶在某一个类别的文章中,出现的次数很多,但是在其他类别的文章当中出现很少

方法2:TfidfVectorizer

在这里插入图片描述
5 Tf-idf文本特征提取

  • TF-IDF的主要思想是︰如果某个词或短语在一篇文章中出现的概率高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来分类。
  • TF-IDF作用:用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度。

TF-IDF—>重要程度 TF—>词频 IDF—>逆向文档频率
eg:
在这里插入图片描述

5.1公式

  • 词频(term frequency,tf)指的是某一个给定的词语在该文件中出现的频率
  • 逆向文档频率(inverse document frequency,idf)是一个词语普遍重要性的度量。某一特定词语的idf,可以由总文件数目除以包含该词语之文件的数目,再将得到的商取以10为底的对数得到。
    在这里插入图片描述

5.2 API

  • sklearn.feature_extraction.text.TfidfVectorizer(stop_words=None,…)
    • 返回词的权重矩阵
      • TfidfVectorizer.fit_transform(X)
        • X:文本或者包含文本字符串的可迭代对象
        • 返回值:返回sparse矩阵
      • TfidfVectorizer.inverse_transform(X)
        • X:array数组或者sparse矩阵
        • 返回值:转换之前数据格式
      • TfidfVectorizer.get_feature_names()
        • 返回值:单词列表

5.3 流程分析
在这里插入图片描述
在这里插入图片描述

6 Tf-idf的重要性
分类机器学习算法进行文章分类中前期数据处理方式

  • 22
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
特工程是使用专业背景知识和技巧处理数据,使得特征能在机器学习算法上发挥更好的作用的过程。它包括特征抽取、特征预处理和特征降维等内容。特征工程对于机器学习的效果具有直接影响。 在Python中进行机器学习特征工程,可以使用多个库和工具来完成。下面是一些常用的Python库和工具: 1. Scikit-learn:Scikit-learn是一个功能丰富的机器学习库,提供了许多特征工程的方法,包括特征抽取、特征预处理和特征降维等。你可以使用Scikit-learn来进行特征选择、标准化、缺失值处理等操作。 2. Pandas:Pandas是一个用于数据分析和处理的库,提供了丰富的数据操作功能。你可以使用Pandas来加载和清洗数据,进行数据预处理和特征选择。 3. Numpy:Numpy是Python中一个强大的数值计算库,提供了高效的数组操作功能。你可以使用Numpy来进行数值特征的处理,如归一化、标准化和缩放等。 4. Featuretools:Featuretools是一个用于自动特征工程的库,它可以根据数据的结构和关系自动生成特征。你可以使用Featuretools来创建新的特征,通过组合和聚合现有特征。 5. Feature-Engine:Feature-Engine是一个专注于特征工程的库,提供了多个特征处理方法。你可以使用Feature-Engine来处理缺失值、离群值、编码分类变量等。 在进行机器学习特征工程时,你需要根据具体的问题和数据集选择适合的方法和工具。通过合理的特征工程处理,可以提高机器学习模型的性能和准确性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值