基于非线性干扰观测器的六自由度机械臂控制

1.观测器公式推导

当存在扰动时,机械臂的动力学方程如下:

M*ddq+C*q+G=T+d

对上式进行恒等变化得:

d= M*ddq+C*q+G-T

 设计干扰观测器:

\dot{\hat{d}}=L(q,dq)*(d-\hat{d})=-L*\hat{d}+L*d=-L*\hat{d}+L*(M*ddq+C*dq+G-T)

\dot{d}=0,则:

e=d-\hat{d}

\dot{e}=-\dot{\hat{d}}=-L*(d-\hat{d})=-L*e

观测误差满足 \dot{e}+L*e=0,取L=[c1,c2,c3,c4,c5,c6],因加速度不可测,定义辅助向量:

z=\hat{d}-p(q,dq)

L*M*ddq=\frac{dp}{dt}=[\frac{\partial p}{\partial q},\frac{\partial p}{\partial dq}]*[dq,ddq]',得:

\hat{z}=\dot{\hat{d}}-L*M*ddq =-L*\hat{d}+L*(M*ddq+C*dq+G-T)-L*M*ddq =-L*z+L*(C*dq+G-T-p)

观测器设计为:

\begin{bmatrix} \dot{z}=-L*z+L*(C*dq+G-T-p) \\ \hat{d}=z+p \end{bmatrix} 

p=c*\begin{bmatrix}ddq1 \\ ddq2 \\ ddq3 \\ ddq4 \\ ddq5 \\ ddq6 \end{bmatrix}, \frac{dp}{dt}=c*\begin{bmatrix}ddq1 \\ ddq2+ddq1 \\ ddq3+ddq2+ddq1 \\ ddq4+ddq3+ddq2+ddq1 \\ ddq5+ddq4+ddq3+ddq2+ddq1 \\ ddq6 +ddq5+ddq4+ddq3+ddq2+ddq1 \end{bmatrix}L=c*M^{^{-1}}

 2.轨迹跟踪控制器

采用重力补偿+PD的控制方式,控制率如下:

T=kp*qe+kd*dqe+G+\hat{d}

3.效果展示

视频效果

基于非线性干扰观测器的六自由度机械臂控制

技术交流邮箱(欢迎交流、讨论、私信):3531225003@qq.com

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值