一:Pytorch实现经典模型AlexNet模型
要求:
使用pytorch实现经典的分类模型AlexNet,这里主要因为没有GPU环境,而其完整参数达到了6000万个,所以如ppt要求,在该模型的基础架构上,修改卷积核的大小以及卷积操作的步长等来模拟实现。
实验设计:


实验过程:
注:这里主要介绍一下AlexNet模型的定义,其中因为参数量过大,以及图片的输入大小变为了64*64,所以对于每层的卷积核大小以及步长等做了相关变化。
1.1AlexNet模型定义
1. # 定义神经网络
2
本文介绍了如何在Pytorch中实现经典分类模型AlexNet的简化版本,针对无GPU环境,通过调整卷积核大小和步长来适应资源限制。实验设计包括5层卷积和3层全连接,详细介绍了各层配置。完整代码和数据集可在指定链接获取。
订阅专栏 解锁全文
1341

被折叠的 条评论
为什么被折叠?



