从Inception到Xception,卷积方式的成长之路!

本文详细介绍了Inception网络的发展,从Inception v1的多尺度卷积到Xception的Depthwise Separable Convolution。通过Pointwise Conv减少计算量,Inception v2和v3通过小卷积核替代和拆分进一步优化,Bottleneck结构进一步降低参数量。Xception结构结合Depthwise和Pointwise Conv,极大地减少了参数,提升了效率。
摘要由CSDN通过智能技术生成

2014年Google提出了多尺度、更宽的Inception网络结构,不仅比同期的VGG更新小,而且速度更快。Xception则将Inception的思想发挥到了极致,解开了分组卷积和大规模应用的序幕。

本文将详细讲述

  • Inception v1的多尺度卷积和Pointwise Conv
  • Inception v2的小卷积核替代大卷积核方法
  • Inception v3的卷积核非对称拆分
  • Bottleneck卷积结构
  • Xception的Depthwise Separable Conv深度可分离卷积

多尺度卷积

Inception 最初提出的版本主要思想是利用不同大小的卷积核实现不同尺度的感知,网络结构图如下:
在这里插入图片描述
Inception Module基本组成结构有四个成分。1*1卷积,3*3卷积,5*5卷积,3*3最大池化。最后对四个成分运算结果进行通道上组合,这就是Inception Module的核心思想:利用不同大小的卷积核实现不同尺度的感知,最后进行融合,可以得到图像更好的表征。

使用了多尺度卷积后,我们的网络更宽了,同时也提高了对于不同尺度的适应程度。

Pointwise Conv

使用了多尺度卷积后,我们的网络更宽了,虽然提高了对于不同尺度的适应程度,但是计算量也变大了,所以我们就要想办法减少参数量来减少计算量,于是在 Inception v1 中的最终版本加上了 1x1 卷积核,网络结构图如下:
在这里插入图片描述
图a与图b的区别就是是否使用了 1x1 卷积进行压缩降维

使用1x1 卷积核主要目的是进行压缩降维,减少参数量,这就是Pointwise Conv,简称PW。

举个例子,假如输入的维度是 96 维,要求输出的维度是 32 维,二种计算方式:

  • 第一种:用3x3的卷积核计算,参数量是3*3*96*32=27648(为了方便计算,这里忽略偏置bias,后面的计算均如此)
  • 第二种:先用1x1卷积核将输出通道降维到32,参数量是1*1*96*32=3072,再用3x3卷积计算输出,参数量是3*3*32*32=9216,总的参数量是3072+9216=12288

从结果12288/27648=0.44可以看到,第二种方式的参数量是第一种方式的0.44倍,大大减少了参数量,加快训练速度。

由Inception Module组成的GoogLeNet(Inception V1):

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

雷恩Layne

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值