从Xception网络中聊聊深度可分离卷积

Xception: Deep Learning with Depthwise Separable Convolutions,在这篇文章中应用了深度可分离卷积。对于卷积来说可以看作三维的滤波器:通道维度+空间维度,常规的卷积就实现空间相关性和通道相关性。传统的卷积就是把所有通道当作一个整体来进行卷积,而在Xception文章中把通道数进行分组然后再卷积,然后再联合。

这幅图和Xception最接近,先进行1*1的卷积,然后再每个通道上进行3*3的卷积。将这个结果Concat起来就是卷积的结果,当然这也是一个可分离的卷积过程。 当Figure4和本文中还是有一点差别的:

  • 深度可分离是先进行每个通道的卷积,然后得到结果concat起来,再进行1*1的卷积
  • Inception中,每个操作后会有一个ReLU的非线性激活,深度分离是没有。

Xception的整体框架如下:

可以看到使用了残差网络的结构;接下来就聊聊每个模块中都用的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值